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Abstract: The “chess block” is an intuitive design for the urban block. It maximizes
maximally daylit houses on the block. We here address the chess block because it ap-
pears to increasingly dominate contemporary construction. The chess block maximizes
the block’s daylit houses, daylit windows, and even profit. It is the built manifestation
of the large developer’s plan. Developers of mere sub-divisions of the block often fail
to coordinate as successfully. But when households have more time-at-home (so that
they value daylighting more), that failure becomes more acute. Sub-developers then
coordinate more. Because the chess block is less dense, its increasing adoption pushes
the marginal resident out, and bright houses’ price up. Households’ increasing time-at-
home offers a novel, simple, secular and global explanation of: the secular, global rise
of the chess block and the price of housing, and of growing collusion in construction.
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1 Introduction

Anyone is familiar with the chess board. Its design simply “colors in” the squares of
the board in black and white such that no two adjacent squares share the same color.

If we read the board as an urban block, a black square as a house, and a white square
as a yard, we have this paper’s “chess block”. Intuitively, the chess block not only (i)
fully daylights each of its houses, but also (ii) packs as many of those fully daylit houses
as possible into the block. Not only is the chess block “bright”, providing each of its
houses with daylight from all around; also it is “dense”, maximizing maximally bright
houses on the block. Fig. illustrates the chess block on a 6 x 5 example. Fig. (2))
shows a chess block under construction in Dortmund, Germany. Levittown (Fig. )
is a chess block in a city periphery. But Stuyvesant Town (Fig. ) and the blocks in
Guangzhou (Fig. ) and Munich (Fig. ) are chess blocks near city centers, too.

In this paper we explore the properties, the origin, and the future of the chess block.
We set out the many ways in which the chess block creates opportunities for daylighting
the home. We prove that the chess block is a large developer’s best design. We show
how and when the chess block emerges in sub-developer equilibria, too. We then offer
a secular, global explanation that the secular, global rise of the chess block calls for.
Households enjoy more time-at-home today than in the past. So they are willing to
pay more for a daylit home. The real estate industry responds by building chess blocks’
bright houses. Yet while chess blocks daylight houses well, they push marginal residents
out. In short, more time-at-home contributes to the secular, global rise in house prices.

At first sight the chess block seems a natural, if not outright appealing design. How else
would a developer organize his houses on a given block? But let us early on reverse the
vantage point here. Not only is the chess block just one design among many. Even for
the number of parcels small (equal to 30 say), the number of distinct designs is vast (i.e.
1.073 billion app.). For instance, there are (38) different ways alone to build 20 houses
into a block of 30 parcels. Also, a block is not necessarily built by a developer. Often
multiple smaller, or “sub-”, developers compete on the block. We should expect these
sub-developers to have little to no regard for the daylight neighboring sub-developers
enjoy. Sub-developers have no shared interest in making the block “appealing”.

Historically, block designs rarely strike the chess block’s delicate balance between light-
ing and packing. Fig. shows the dense “Haussmann-type” block often still standing
today, say, in Paris’ 8th arrondissement, Barcelona’s Eixample, New York’s Upper West
side or Berlin’s Kreuzberg district. Fig. resembles the “perimeter block” typical
of Georgetown/Wash. or of many other US historical city centers. Fig. shows the
orderly “rows block” popular in Germany’s Weimar Republic. To varying degrees, all
of these blocks sacrifice daylight exposure for being able to pack more houses into the
block. In short, urban blocks built in the past typically are both: dense and dark.

Those dense, dark blocks are no longer built today. Instead, contemporary construction
appears to converge on the chess block. One theoretical result below is that the chess
block maximizes the number of windows that are daylit. Some random real block is
unlikely to precisely attain the chess block’s maximum daylit windows. But we do not
argue here that the resulting deviation between the observed number of windows and
its maximum is small. Instead we suggest that it has become smaller (and is likely to



get smaller still). An empirically minded reader may want to see the evidence here. A
study of global trends in urban design is desirable. Yet even absent that study (we are
aware of none), four reasons seem compelling enough for inspecting the chess block now:

First, the anecdotal evidence on chess block proliferation speaks for itself. Chess block
construction virtually all but surrounds us. It seems the rare contemporary urban block
that is not both bright and dense. (We invite the city-based reader to visit ongoing block
developments in her or his neighborhood.) Second, as a matter of caution, the chess
block should be understood now, not later. An early understanding of the chess block’s
role for welfare can help us assess ways to improve on it. Third, much can be learnt from
the chess block’s seeming simplicity. The chess block suggests tools that can benefit our
understanding of urban design generally. Fourth, only a mature theory of the chess block
supplies the meaningful (non ad hoc) propositions that can inform data consultation.

Why has the chess block become so dominant in today’s construction? To what effect?
Who are its builders? Architectural historians and urban planners point to the legacy
of early modernist architects like Louis Sullivan and Frank Lloyd-Wright, full-on mod-
ernists such as Le Corbusier, or Bauhaus and Harvard architects like Walter Gropius
and Marcel Breuer (e.g. Goldberger (2023)). Their modernist design ideas are echoed
by the chess block. Le Corbusier’s demands for “light and air for all” literally translate
into the block being both daylit throughout (“light and air”) and packed (“for all”). In
this paper we offer very different, and new, answers to the questions raised above. These
derive from an economics perspective instead. They appeal (i) to long run changes in
societal constraints (i.e. the decline in the household’s time at work) and (ii) to the real
estate industry response they induce (i.e. sub-developer coordination on block design).

We first offer a parsimonious economic model of the chess block. As we will see from
a variety of different perspectives, the chess block makes the most efficient use of block
daylight. We prove, highlight and acknowledge four core admirable properties of the
chess block. The chess block (1) minimizes the number of yards necessary to daylight
every house, (2) maximizes the number of fully daylit houses, (3) maximizes the total
number of daylit windows, and (4) maximizes block profit (for a reasonable range of
prices). Large, or “block-", developers negotiate the block’s daylighting externalities
best when building the chess block. The chess block is the built manifestation of a large
developer’s optimizing plan, elegantly maximizing all within-block daylight externalities.

Multiple smaller sub-developers find it difficult to coordinate on the chess block. Any in-
dividual sub-developer has little incentive to avoid occluding neighboring sub-divisions’
houses. The individual sub-developer is tempted to overbuild. Especially near the city
center, the great location value of any house makes dense blocks likely. In the city pe-
riphery, smaller location value allows sub-developers to coordinate on the chess block.
There sub-developers tacitly collude. Their sub-division designs amalgamate into the
chess-block. In the periphery, the chess block (5) also emerges as an equilibrium configu-
ration. This adds to the chess block’s efficiency properties (and cautions against reading
developer competition off observed block design or real estate industry concentration).

Here a microeconomic analysis of urban daylight comes into view. (Oddly, urban day-
light, or the urban window that lets daylight into the house, has received little attention
in urban economics.) Departing from a simple “axiomatic” approach to daylighting
technology, equilibrium specifies the design of the block, for any space-time-context one
may encounter within the city and for a variety of land ownership constellations. A



(a) (b) (c) (d)

“chess block” “Haussmann block” “perimeter block” “rows block”
15 houses, 15 yards 22 houses, 8 yards 19 houses, 11 yards 16 houses, 14 yards
60 daylit windows 34 daylit windows 42 daylit windows 38 daylit windows

Notes: (i) The figure’s block designs are shown on a 6 x 5 block grid. (ii) Fig. shows the generic “chess
block”. The chess block starts with a house on the block’s “top left corner”, then successively alternates built-up
parcels (houses) with parcels not built up on (yards). This pattern is easily extended to any m x n grid. (ii) Fig.
shows an “Haussmann block” that is nearly built up on fully. (iii) Fig. ’s “perimeter block” builds up
on the block’s perimeter, but essentially maintains an open block interior. (iv) Fig. shows the “rows block”.

Figure 1: The chess block, and three historical alternatives

fine-grained map of daylightings and occlusions emerges. That map assigns every house
its individual daylighting quality. In this context we experiment with a secular, near-
global increase in households’ valuation of daylight in the home that is suggested by the
secular, near-global reduction in households’ time-at-work reported in the literature.

Four long-run adjustments then become “inexorable”: Those are adjustments in (i)
real estate industry organization, (ii) urban block design, (iii) population density, and
(iv) the price of residential real estate. Sub-developers extend their collusion to blocks
even nearer to the center. Non-cooperative, i.e. denser and darker, blocks become
fewer, and the rise of the chess block becomes inevitable. To accommodate the city’s
exogenous population, city rings must now extend further out, pushing the marginal
resident further away from the city center. Thus bright houses’ prices rise. And while
it is true that dark houses’ prices fall, dark houses also recede. When time-at-home has
fallen enough, all developers collude not to occlude. Chess blocks will be ubiquitous.
Cheap dark houses will have disappeared. Only bright — and expensive — houses remain.

Occluding a neighboring window is the quintessential externality. (Where the occluded
house foregoes one daylit window, the occluding house may gain three daylit windows.)
So on the one hand, internalizing the occlusion externality is really only one more
instance of property rights centralization (Coase (1960)). On the other hand, making
explicit the positive daylight externality joint with its twin, the negative occlusion exter-
nality, fills in desirable detail. This detail shows up in the optimal level of the occlusion
externality (it is 0), in our predictions of the spatial remit of chess block dominance
(in the periphery, and not in the city center), in externality internalization’s long-run
impact on house prices (prices rise) and on the spatial structure of the city at large
(growing shades in private open space and receding shade in public open space).

No microeconomic model of urban daylight has, to the best of our knowledge, been put
forward to date. Ideally, any such model builds on the rich existing insights in the litera-
tures on developer interaction, daylight valuation, industry consolidation, house prices,
land assembly, and block design. Strange (1992) is an early exploration of externalities



Notes: (i) The figure shows a block currently under construction (not far from the center of the medium sized
city of Dortmund, Germany). (ii) This block resembles, and hence may be counted as an example of, the paper’s
generic “chess block” in Fig. ) (iii) The block is built by a single developer, “Assmann Group”. (iv) A
number of pictures on construction progress are made available, by the developer, on the developer’s website.

Figure 2: An example of contemporary residential real estate

across adjacent neighborhoods among interdependent developers. Here any individual
developer’s choice of his neighborhood housing fails to account for that housing’s nega-
tive effect on neighboring housing. These developers’ failure parallels the disregard our
paper’s sub-developers profess for neighboring sub-divisions’ daylight.

Huberman/Minns (2007, Table 3) document annual hours at work between 1870 and
2000 for the US, Canada, and a subset of Western European countries. For example,
for the US they find that annual hours at work declined from nearly 3,000 to less than
2,000 from 1900 to 2020. Starting from slightly higher levels, France and Germany saw
their hours at work decline by even more. We expect similar trends for many other
industrialized countries, too. We also suggest that all the extra time away from work is
in part also spent at home. Sharkey (2024) gives recent evidence for U.S. adults. Over
the period between 2003 and 2022 alone (i.e. not just since Covid-19), U.S. adults have
increased their time-at-home by 1 hour and 39 minutes.

More time-at-home should have the household appreciate daylight more. Fleming et al.
(2018) are the first to provide hedonic estimates of households’ valuation of sunlight.
Following these authors, and on data for Wellington (New Zealand), every extra hour of
sunlight exposure raises the value of local real estate by 2.4%. This result does not assert
that the valuation of daylight equals that of sunlight, or even that daylight valuation is
greater today than it was in the past. But it does suggest that daylight consumption
in the home has significant value today. Dantzig/Saaty (1973) famously proposed a
compact city design that would have stacked large slices of dark housing on top of each
other. Fifty years on it seems difficult to even only imagine their dark housing part of
a “liveable urban environment” (as claimed by that study’s title).

A large literature documents the rise in the price of housing (both owner-occupied and
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(a) Stuyvesant Town (b) Levittown, Pennsylvania

—mNG

DOMAGKPARK

Dras.

(¢) Guangzhou (China) (d) Domagkpark (Munich/Germany)

Notes: (i) The figure shows the figure ground plans of four blocks that approximate the stylized chess block in
Fig. , and hence in turn benefit from an understanding of the generic chess block. (ii) The blocks “Stuyvesant
Town” in New York and “Domagkpark” in Munich/Germany are centrally located, Levittown and Guangzhou
are at their cities’ respective urban peripheries. (iii) Source: Google Earth/Google Maps.

Figure 3: Approximate chess blocks

rented) on an almost global scale, and for almost half a century now (e.g. Knoll et al.
(2014), Jorda et al. (2019), Lyons (2025) for the US). A trend towards ever stricter
zoning is often suspected to drive the price of housing up (e.g. Glaeser/Ward (2008),
Gallagher et al. (2024)). A landlord majority zones for low-density housing, minimum
lot sizes, or excessive environmental regulations. d’Amico et al. (2024) argue that
developers build less because project size falls. But growing collusion among developers
may reduce housing supply, and increase house prices, too. Tacitly colluding developers
embrace the chess block not because they have to, but because they want to. The chess
block enforces a scheme of “internal” or “voluntary” zoning. When zoning is not binding,
then a policy of zoning less may fail to unleash housing supply (Diamond et al. (2024)).

This paper is in seven sections. Section 2 presents the microeconomics of daylight. Sec-
tion 3 sets out the chess block and its core properties. Section 4 analyzes equilibrium
configurations when sub-developers share in, and compete on, the block. Section 5 ana-
lyzes the paper title’s rise in time-at-home. Section 6 allows for various extensions, and
section 7 concludes. (Remarks give auxiliary results, propositions state main results.)

2 A Closed Daylit City

The closed city model represents an entire urban system of like-minded cities across
which households are mobile (Brueckner (1987)). Our analysis is set into the context



of a closed daylit city. This is, with the exception of Dascher/Haupt (2025), a novel
city model. An area of land is large enough for our representative city to unfold inside
it. We partition the city’s area into rectangular blocks by horizontal and vertical strips
of land (of one unit width) called streets and roads, respectively. A block is an m by
n array of mn equal-sized square parcels, also called lots. The city center is coincident
with the intersection of some street with some road. All jobs, shops, and schools are
found in the center. City residents must commute there to avail of them. Within-block
travel is free. So commutes along the street grid need only depart from, and terminate
at, the corner of the resident block nearest to the center. Manhattan type distance
r equals n + 1 times street sections plus m + 1 times road sections travelled (Yinger
(1993)). Commuting a distance of r twice a day costs tr. City population is L.

Depending on whether its (at most four) neighboring lots are built up on or not, each lot
may be daylit not at all, or once, twice, three or even four times. Five specific assump-
tions will govern any lot’s daylight reception. First, only indirect daylight, deflected by
the lot’s neighboring yards, daylights that lot. Direct daylight, streaming in from the
sky, does not. Second, daylight deflected into any given lot only streams in from as far
as that lot’s neighbors, and never from lots further afar. Third, any yard daylights all
four neighboring lots just as well as it daylights a single built-up neighbor. Fourth, sun-
light streaming into any lot from different directions “adds up”. Alternatively justified,
it has the lot enjoy sunlight longer. And fifth, facing south — or north on the Southern
hemisphere — is as good as facing any other direction. Our discussion assumes a house
of h = 3 or 4 stories, but even 5 or 6 stories seem defensible, too.

To live in the city, the household must live in a house. Utility is e +wwv, where e is food,
w € {0,...,4} is the number of the house’s daylit windows, and v is the household’s
valuation of the daylight streaming into any of those daylit windows, v > 0. Valuation
v is increasing in the household’s time-at-home. When w is 4, the house is fully daylit;
while when w is 0, it is dark. Construction cost is zero. Let p(r) denote the rent of a
dark house at distance r. Thus a house with w daylit windows rents out at p(r) + wov.

A resident of a fully daylit house at the city boundary 7 (where an abundance of fully
daylit countryside houses is just within a step’s reach) eats whatever remains of the
wage after taking tr off. At the same time, that resident, when living in a dark house
at distance r < 7, only enjoys an amount of food equal to the wage minus the cost of
living (p(r) + tr) and minus the daylighting disadvantage 4v. So in equilibrium,

p(r) = —dv + ¢(7 - r) (dark rent). (1)

expresses dark rent at distance r and daylight valuation v and for city size 7. For city
size given and with a secular rise in daylight valuation, dark urban houses (w = 0) lose
value; then only bright urban houses (w = 4) are able to maintain their value.

Via eq. , in large cities (7 large) or, for that matter, anywhere households enjoy little
time-at-home (v small), dark rent can be expected to be positive at least near the center
(r small). Historically, dark rent often was positive at the center, else New York’s “old
law tenements” would not have multiplied (Glaeser (2012)). However, in any average
size city today, we expect negative dark rent even at the city center, i.e.

p(0) < 0 (negative dark rent) (2)

or tr < 4v. For example, consider “Munger Hall”, a recent student dormitory design for
Berkeley, California. Munger Hall was to have mostly windowless apartments. Tellingly,



it never got built, not even in expensive California (Cramer (2021)). (Urban design in
mega-cities (7 large) or in poor countries (v small) is outside the remit of this paper.)

It is X the m x n layout of the rectangular city block. Lots are labeled (j, k) (or only
jk), with row index j ranging from 1 to m and column index k ranging from 1 to n.
Vector x, with

' = (T11,- -, Tlny - s Tmly- - Tmn) (configuration or block), (3)

translates the block layout X into the mn x 1 design or simply block x, of houses (xx
is 1) and yards (0). Any house has one window on each of its 4 walls or faces. Whether
or not a window is more than a mere sheet of glass hanging down a wall depends on
how the land on the lot adjacent to it is used. If the neighboring lot is a yard, daylight
will stream in through the window pane; while if that lot has a house built onto it, no
daylight will. Let ¢ be an mn x 1-vector of 1’s. Then the block has ¢/t (or v for short)
lots, ¢/x (or N) houses, 4¢'x windows, and ¢/(¢ — x) yards.

If two houses neighbor one another, they mutually occlude each other. Any adjacency
produces two occlusions. Symmetric mn X mn adjacency matrix A has a 1 in row jk
and column pr if lots jk and pr are adjacent, and a 0 else. There are ¢'A¢/2, or &,
adjacencies altogether. Total occlusions on the block amount to &’ Az. To account for
daylight streaming into a lot from outside the block, we define the mn x 1 vector f of
(street-)front valuations. Whenever f;, # 0, lot jk is a frontage lot. If fj equals 2, lot
Jjk is a corner lot, while if f;;, is 1, lot jk is a non-corner frontage lot. For interior lots
Jjk remaining, fj is 0.

We turn to the subset of windows that are daylit. It is ' A(¢—a) the number of windows
daylit from within the block. These windows are “internal daylightings” or “internally
daylit windows”, A; for short. Since every window facing the street is daylit, it is =’ f
the number of windows daylit from outside the block. Those windows are “external
daylightings” or “externally daylit windows”, denoted A,. In short,

AN(z) = 2'A(L—=) (internally daylit windows) (4)
A(z) = 2'f (externally daylit windows). (5)

Alx) = Ai(x) + Ao(x) (daylit windows) or (6)
AMz) = 4z - 2'Azx (daylit windows) (7)

The second equation represents total daylit windows by subtracting occluded windows
(x' Ax) from total windows (4¢'x). This is an alternative perspective very useful later.

Daylight is valuable, and profitable, only if it is consumed. A daylighting involves two
lots: one that emits daylight, another that receives it. So while “daylit windows” and
“daylightings” are synonymous below, only the term “daylighting” gives due credit to
the complementarity of the window with the yard it looks onto. This complementarity
suggests we focus on pair-wise adjacencies between, rather than on, lots. Translating
the block’s adjacency matrix A into a graph provides for precisely that focus. (For
any graph concept introduced below see Diestel (2017) or Bondy/Murty (2018).) Let
us represent lot jk by wverter (j,k). Any two vertices jk and pq are linked by an edge



(a) block b (b) block a (c) block d (d) b’s frontage

Ai(b) =49 = ¢ Ai(a) =49 =¢ Ao(d) =13 Ao(b) = 11
Notes: (i) Houses are shown in black, yards in white. (11) Figs. (4a) and (4b), show the two alternating designs,
b and (¢ — b) = a on the 6 x 5-block, respectively. (iii) Figs. (4c) and (4d) highlight the corresponding sets of

the block’s frontage lots, joint with the subsets of houses and yards in them.

Figure 4: Bipartite designs

((jk), (pq)) whenever they are neighbors according to A. Vertex set V' and edge set FE
constitute graph G, with v = |V| = mn vertices and € = |E| edges.

A design x partitions the vertex set V into two subsets, i.e. into the subset of house
vertices (houses for short) and that of yard vertices (yards). A daylighting really is
an edge of the graph that links a house to a yard; while an occlusion is an edge that
links a house to a house. From this perspective, it is clear that the block’s capacity for
daylightings internal to it, A;, is limited by the graph’s total of € edges. There can be
never more internal daylightings than there are edges to G, £ (Remark 1 (i)).

A graph is bipartite or bi-colored if there is a partition of its vertex set V into two subsets
such that every edge links to a vertex from either subset. Now, G is bipartite. To see
this, we define

B = {(j,k) : 4,k both odd or both even} (partite set B). (8)

Correspondingly, B¢ is the set of pairs of indices so that one index is odd and the other
is even. Because (B, B€) is a bipartition of V, G is bipartite (Remark 1 (ii)). Bipartition
(B, B¢) induces bipartite design b, by setting bj, = 1 if jk € B, and bj = 0 else. The
only other bipartite design is @ = ¢ — b; it is induced by B¢. Both designs b and a
sucessfully turn every adjacency “on”, i.e. into a daylighting (Remark 1 (iv)).

When v is odd (and only then), designs b and a disagree on the number of houses and
windows. Here b always has 1 house, and 4 externally daylit windows, more than a
(Remark 1 (iii)). This we understand by consulting the two designs’ corner lots. Corner
lots are daylit twice. If v is odd, b builds up on all four corners, while a builds up on
none of them. So design b has 4 external (and also total) daylightings more than a.

Remark 1 (Bipartite Designs)

(i) Internal daylightings are bounded by the number of graph G’s edges, Ai(x) < €.
i)  Graph G is bipartite, with B and B¢ its partite sets.

) Design b has 1 house, and 4 daylit windows, more than a iff v is odd.

v) Designs b and a both have mazimum internal daylightings, A;(b) =& = A;(a).
) Any path between a vertex (lot) in B and another in B¢ has odd length.



Proof of Remark 1: (i), (iii) and (iv) in text. (ii) Let vertex jk € B, i.e. with
4, k either both odd or both even. Any neighboring vertex adds 1 to, or subtracts
1 from, one, and just one, of vertex jk’s two indices. If both indices are odd
initially, now one index is even; if both indices are even initially, now one is odd.
Thus every neighbor of jk € B is in B€. Similar reasoning applies to each vertex
in B¢. So (B, B°) is a bipartition. [J

(ii) Any path of even length starting with a vertex in B terminates in B. [

We next introduce our title design, i.e. the chess block. In the block context, the chess
block ¢ coincides with b if v is odd, and with either b or a if v is even (Definition 1). Up
to that ambiguity, the chess block is well defined. The set of the chess block’s houses
C coincides with B if v is odd, and with either B or B¢ if v is even. In our definition,
the chess block is that bipartite design that always has at least as many houses as the
other. Fig. ) illustrates the chess block for when v is even. In our 6 x 5 example, the
chess block has A; = € or 49 internal daylightings and A, = 11 external daylightings.

Definition 1 (Chess Block)

Chess block ¢ is b or a if v is even, and b if v is odd.

We now let a block developer own, and develop, all of the block’s lots. The aggregate
value of dark houses is pt/x, or pN (and negative). The aggregate worth of daylit
windows is vA(x) (and positive). The block developer maximizes block profit, II(x),

I(xz) = pi'z + v(A;(z) + Ao(z))  (block profit) 9)

by optimally choosing . (Dropping structures while keeping windows unfortunately
is not feasible.) There is a large number of distinct possible designs @ to choose from.
That number is equal to 2¥, and it is exponentially increasing in v.

We now break down the block developer’s original (non-linear, integer) program ({9)
into two smaller steps. We first recognize that the block developer could start by
maximizing daylit windows A via choosing the optimum design @ for parametric V.
The value function to this problem is the block’s daylight frontier A(N), in eq. (10).

Once the daylight frontier is found, second, the block developer chooses the number of
houses N that maximize profit along it. This then yields maximum profit, in eq. :

AN) = max (Ai(z) + Ao(z)) st. /& =N (daylight frontier).  (10)

X
I(p,v) = max (pN + vA(N)) (maximum block profit). (11)
This two step procedure yields the optimum number of houses N(p,v), the optimum
number of daylit windows A(p,v), the optimal block design x(p, v) and maximum block
profit II(p,v). (For a brief formal exposition see the Appendix.) Where the second

step merely involves linear optimization, the first step requires us to solve a non-linear
program.

3 The Chess Block

We first show that the chess block fully daylights all of its houses by a minimum set
of yards (Proposition 2). This perspective provides a lower bound on the maximum



number of daylit windows. We then show that the chess block even maximizes daylit
windows (Proposition 3). This sets up a first point on the daylight frontier A(V), from
which further points follow. We go on to prove that the chess block maximizes block
profit (Proposition 4), and that it does uniquely so. The chess block is the only profit
maximizer (Proposition 5). It unfailingly guides a large developer into maximum profit.
The chess block’s physical simplicity coincides with its economic profitability.

A cover of the graph is a subset of vertices such that every edge links to a vertex in
that set. If the set of yards is a cover, every window is daylit. Clearly the chess block’s
set of yards, C¢, is a cover (Proposition 1 (i)). Next, a matching is a subset of edges no
two of which are incident with the same vertex. Fig. shows a matching M* that
pairs successive vertices. A total of v (v — 1) vertices are used up in the process if v is
even (odd). Frankly, it is impossible to have more matches than v/2 ((v —1)/2) if v is
even (odd). It is M* a maximum matching.

Proposition 1 (Chess Block has Minimum Yard Cover)

(i)  Chess block yards are a cover.

(ii)  Graph G’s mazimum matching has v/2 edges if v is even, and (v — 1)/2 if v odd.
(iii)  The chess block’s yards C° are a minimum cover.

(iv)  The chess block’s houses C' are the mazimum set of fully daylit houses.

Proof of Proposition 1:
(i) (C,C°) is a bipartition: Every edge links to vertices in both C' and C¢. [

(ii) Generally, | M| < v/2. Consider the set M of independent edges ((1, 1), (1,2)),
(1,3),(1,4), etc. (Fig. (5b))) As it has v/2 edges, M is a maximum matching. [J

(iii) By Koénig’s theorem, a minimum cover must have v/2 vertices. Yet house
cover |C| attains v/2 when v is even. (For v odd, |C| = (v —1)/2.) O

(iv) Suppose there are more than |C| fully daylit houses. But then there are less
than |C€| yards. By Proposition 1 (iii), those yards cannot be a yard cover. [J

A famous theorem on bipartite graphs (i.e. Kénig’s theorem) informs us that any yard
cover, that has as many vertices as M™* has edges, is minimum. But the chess block’s
set of yards C¢ achieves just that. It has v/2 yards if v is even, and (v — 1)/2 yards if
v is odd. So the chess block’s set of yards is a minimum cover. This has an immediate
implication for daylit houses. If the chess block’s yards C'¢ are a minimum cover, then
the chess block’s set of houses C' is the maximum set of fully daylit houses. There
cannot be more fully daylit houses than with the chess block (Proposition 1 (iv)).

This yields a preliminary result: If the block always allows for v/2 fully daylit houses if v
is even, and for (v+1)/2 fully daylit houses if v is odd, then 4 times these figures indicate
lower bounds on the maximum number of daylit windows in the block, max A(x):

max A(x) >
x

2v if v is even
{ 2(v+1) ifvisodd (12)

While there cannot be more fully daylit houses than with the chess block ¢, we cannot
rule out that daylit windows may be more with other configurations * # c¢. We need to
address daylit windows directly. We recall that the chess block exhausts all potential
daylightings from within the block, A; = ¢ (Remark 1 (iv)). Any extra daylighting must
come from outside the block. Put bluntly, more houses must be built on the block’s
frontage. We define the subset of frontage vertices V;,, Vi, = {(j,k) : fjx # 0}. Vertex

10



e, L 4 & O

(a) chess block on  (b) chess block on (c) chess block on (d) alt. block x on

lattice graph lattice graph frontage subgraph  frontage subgraph
min. yard cover max. matching
|C¢| =15 |M| =15 |Col =9 1X,| =11

Notes: (i) Panel (a) shows bipartition b, coincident with chess block ¢, on the (block) graph G. (ii) Panel (b)
shows a minimum yard cover (white vertices) as well as a maximum matching (heavy independent edges). (iii)
Panel (c) restricts the chess block to the block’s boundary. (iv) Panel (d) illustrates how two daylightings are
lost if there are only 7 yards on the boundary.

Figure 5: Lattice graph G and frontage subgraph G,

set V,, induces the frontage subgraph G, (Fig. (bc))). It has v, = 2(m + n — 2) vertices.
Subgraph G, highlights the — internal — daylightings possible along the street frontage.
Subgraph G, is a very simple graph. It is a cycle; each of its vertices has degree 2.

Now adding J external daylightings means foregoing ¢/2 frontage yards at least. A
block with v,/2 — §/2 yards can provide at most twice as many internal daylightings
in G,. So having § external daylightings more destroys ¢ internal daylightings in G, —
and hence in G. We conclude that the chess block really does maximize daylit windows.
Inequality above becomes binding,

2v if v is even
X Ax) = AMe) = { 2(v+1) ifvis odd. (13)
Fig. illustrates this. Its design has 7 frontage yards, which can daylight 14 windows
at most. Yet there are 18 windows (one per each of the 18 edges) to be potentially daylit
in G,. So this design fails to turn on 4 of the frontage subgraph’s, and hence also of the
graph’s, edges. The chess block maximizes daylit windows (Proposition 2 (ii)).

When v is even, there are multiple maximizers. Then the chess block is not alone
in maximizing daylit windows. Slight variations in design achieve maximum daylit
windows, too. For example, consider adding to the chess block a house on one of its
vacant corner lots, or on both vacant corner lots. This gives daylit windows maximizers
that differ from chess block types a and b. When v is odd, the chess block is the
only maximizer (Proposition 2 (iii)), however. Here the chess block already builds up
on all four corner lots. To increase daylit windows further, any alternative design must
import daylight by building up on a frontage lot. Building up on a frontage lot increases
externally daylit windows by 1. But it also destroys internally daylit windows by 2 at
least. No daylit windows can be gained by further building up on the block’s frontage.

Of course, if the chess block maximizes daylit windows, it also maximizes daylit windows
for when N is constrained to equal |C|. So |C|,4|C]) in (N, A)-space is a first point on
the daylight frontier (Proposition 2 (iv)). Further points on the frontier follow. Any
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number § of houses less than |C| deletes 4 windows that, since no occlusions with the
chess block exist, were all daylit. Ignoring the integer constraint, the daylight frontier
obeys the equation A(N) = 4N for as long as N is less than |C| (Proposition 2 (v)).

Proposition 2 (Daylight Frontier)

)

) Chess block daylit windows are maz., A(c) = maxg A(x), and equal to 4|C].

(iii) For v odd, maximum daylit windows imply the chess block, A(c) > A(x) for x # c.
(iv)  Point (|C|,4|C|) = P satisfies the graph of the daylight frontier (N, A(N)).

) The daylight frontier is A(N) = 4N for all integer N between 0 and |C|.

Proof of Proposition 2:

(i) Follows from Remark 1 (iv). O

(ii) Let there be some configuration © # ¢ such that A(x) — A(e) > 0. But
then Ay(x) — Ap(c) > 0. Define 6 = A,(x) — Ao(c). To collect § extra external
daylightings, & must have at least /2 streetfront house vertices more (and hence
d/2 streetfront yard vertices less) than c¢. Yet then only 2(v,/2 — §/2) or v, —
edges of G, and hence of G, can be active at most. This is J fewer active edges
than with ¢. Put differently,

Ao(®) — Ao(e) = 6 < Aie) — Agla) (14)

and hence A(x) — A(c) < 0. This is a contradiction. [J

(iii) Consider some @ # ¢ with A(z) = A(c). Via inequality (14)), Ao(z) < Ao(c),
else A(x) < A(e). Moreover, Ao(x) = As(c), else A(x) < A(e). Hence
Ao(x) = Ap(c), which in turn implies A;(x) = Ai(c) = €, too. Thus (X, X€) is
bipartite. So & must equal either b or a. We may rule out a because v is odd. [
(iv) Since A(c) > A(x) for all & (Proposition 3 (i)) (“globally”), it must be
true that A(c) > A(x) for all & constrained to satisfy N = 'z = |C| (“locally”). O

Fig. @ shows the block’s daylight frontier as the upper boundary of the shaded set. The
shaded set is the block developer’s convex opportunity set, and point P is an extreme
point of it. The figure also shows three contours of block profit II, or p/N + vA. Clearly
these contours select vertex P as the optimum design choice; i.e. they select the chess
block. The chess block is the block developer’s profit maximizing design (Proposition 3
(i), and her maximum profit simply becomes |C|(p + 4v) (Proposition 3 (ii)).

Proposition 3 (The Chess Block Maximizes Block Profit)
(i) The chess block maximizes block profit, maxy II(x) = II(c).
(ii)  Mazimum profit function II(p,v) is |C|(p + 4v).

Proof of Proposition 3:

(i) Suppose a configuration & # ¢ exists with strictly greater profit, II(x) > TI(¢).
So « has strictly more houses (Proposition 2 (iv)). Yet it has no more daylit
windows (Proposition 3 (i)). As p < 0 by eq. (1), II(z) < II(c). O

(ii) Each of the chess block’s |C| houses is daylit fully, and has value p + 4v. O

Moreover, the chess block even is the block developer’s only profit maximizing design.
The chess block alone (up to Definition 1’s small ambiguity when block size v is even)
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Notes: (i) It is A(N) the daylight frontier for when v is even. (ii) Three profit contours are drawn, at profits
T, Iz and II5. (iii) Vertex P = (|C|, 4|C|) corresponds to the chess block. (iv) The slope of any profit contour
is —p/v > 0. (v) The shaded set is P, which contains the block developer’s daylight-houses opportunity set
{(N,A) : A <A(N)}. (vi) Changes in p or v have no effect on the solution.

Figure 6: Daylight frontier and the chess block

sets out the optimum combination of houses and daylight (Proposition 4 (i)). Fig. @
thus also motivates the chess block’s ubiquity. Profit for blocks closer to the center
exhibits larger —p/v. For those blocks, contours are steeper. Yet they still select vertex
P. The chess block is the optimum choice at any distance r < 7 (Proposition 4 (ii)).

Suppose, for the moment, that all blocks in all rings in all cities are built by block
developers. Then theirs will be an urban system of a highly repetitive character. With
no exception, and at any distance from the city center, all blocks are chess blocks. One
type of variation arises when v is even. Then the two designs b or @ may coincide. The
only other (and trivial) type of variation obtains if blocks vary in size.

Proposition 4 (With Block Developers, Chess Blocks are Ubiquitous)

(i) The chess block is the unique mazimizer of block profit, Il(x) < II(e) for all x.
(ii)  The chess block almost always, i.e. in all rings r < ¥, is the unique maximizer.

Proof of Proposition 4:

(i) Point P = (|C],4|C]) is an extreme point of the convex constraint set. [J

(iv) By eq. , p is strictly decreasing in r, and so profit contours’ slope —p/v is
strictly decreasing in r, too. [J

This is our first foray into the chess block. We have derived a number of the chess
block’s fundamental daylighting properties. In particular, we have explained the chess
block. The chess block becomes the outcome of a block developer’s profit motive,
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rather a merely remarkable pattern. Economically, the chess block really is both: an
exceedingly simple design principle and a recipe for maximum profit. This coincidence
may contribute to explaining the chess block’s growing adoption. We reveal further chess
block properties shortly. The chess block emerges as a Nash-equilibrium configuration
when sub-developers of the block tacitly collude in the city periphery (Proposition 5).
Moreover, the chess block turns out to “almost” have the minimum number of houses
necessary to comprehensively shade the block’s yards (Proposition 10).

Before we turn to the analysis of sub-developer equilibrium, we note that while we
have cast our analysis in terms of a rectangular block (where notation is simpler), these
propositions do not hinge on the rectangular layout. Any layout of the block gives rise
to the results in Proposition 1 through 4 as long as the corresponding lattice graph has
minimum degree of 2. The proof obtains by retracing those propositions’ proofs for that
general layout.

Note (Chess Blocks are Built on Irregular Blocks, Too)

Propositions 1 through 4 extend to any block whose lattice graph has minimum degree 2.

4 The Chess Estate

Historically it is not the block developer who single-handedly and seamlessly develops
the entire block. Instead sub-developers develop subdivisions of the blocks, or estates.
We now explore the equilibrium spatial structure if decisions on estates are taken by
sub-developers. We set out the resulting mesh of houses and yards, joint with their
attendant daylightings and occlusions, at any distance from the city center. Near it, so
we show first, sub-developers partly occlude each other. Resulting equilibrium blocks
are inefficient. After all, they do not replicate the only profit maximizing design, i.e.
the chess block. But these equilibrium blocks also provide more (and denser, darker)
housing than the chess block (Proposition 5). Further out from the city center, so we
show then, sub-developers tacitly collude in not occluding each other. Now equilibrium
blocks are both efficient and less dense (Proposition 6). We solve for the urban spatial
structure that accommodates the closed city’s given population (Proposition 7).

So let us first partition the block into S > 2 subsets indexed by s = 1,...,5. These are
estates. Any estate is such that any of its lots has two neighbors within that estate. We
do not require an estate’s parcels to be contiguous. A sub-developer’s estate may consist
of disconnected subsets. Then the sub-developer optimizes separately on each subset.
To address the lots of estate s, we introduce the n x 1 ownership dummy ¢4 featuring
1’s for all lots belonging to estate s and 0 entries everywhere else. Via aggregation,
Zle ts yields ¢. The vertex set of estate s is Vi, = {(j,k) : tsx 7# 0}. It induces the
estate’s subgraph Gy = (V, Es) with vy = |V;| vertices and e, = |Ey| edges.

We trace estate design vector xg by

0 if jk is not owned by s
Zsjk =4 1 if jkhasahouse and isowned by s (estate design xs), (15)
0 if jkisa yard and is owned by s
where x, ;i is the sub-developer’s construction decision on lot jk. This completes our
description of estate design xs. By aggregation, Zle x yields «, the composite con-

figuration of the block. Both types of notation, i.e. 1 + ...+ xg and (x1,...,xg),
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capture the configuration produced by combining sub-developers’ sub-designs. We also
define x_s = x — x5 and dummy ¢_s = ¢ — t,. It is x_4 the vector of design decisions
taken by all sub-developers other than s, with entries for sub-developer s’s lots set to 0.

Much as with the entire block, the estate’s internally daylit windows Ag;(xs) are its
windows daylit from within estate s. The estate’s externally daylit windows A (),
however, no longer only count windows daylit by the street; they also count windows
daylit by neighboring estates’ neighboring yards. In short,

Asi(ms) = xLA(Ls —xs) (estate internally daylit windows) (16)
Aso(xs) = aof + L A(t_s —x_5) (estate externally daylit windows). (17)

Now the sub-developer’s daylit windows, Ag, become

As(xs) = Agi(xs) + Aso(zs) (estate daylit windows)  (18)
As(zs) = dlzs— 2 Azy — xl Az (estate daylit windows), (19)

from either a compositional or a residual perspective, respectively. Here the term
L A(L_s — x_s) captures the (positive) inter-estate daylighting externalities; while the
term a, Ax_, highlights the (negative) inter-estate occlusion externalities.

Remark 4 (Bipartite Sub-Designs)
(i)  Sub-graph G, is bipartite, and its bipartite sub-designs are bs and as.
(ii)  Bipartite sub-designs’ internally daylit windows are mazimum, A; 5(bs) = A; s(as) = 5.
(iii) Facing b_s, sub-design bs has 4 — b, Ab_,; more (externally) daylit windows than as.

Proof: (i) Consider any edge in the sub-graph. By definition, that edge also is
an edge in the block graph. Because the graph is bipartite, the edge links to both
a house and a yard. So the sub-graph is bipartite, too. [

(ii) Similar to the proof of Remark 1 (iv). O

(iii) Absent a neighboring estate’s occlusions, bs has 4 externally daylit windows
more than as. (It builds up on corner lots.) Now subtract b, Ax_, occlusions. O

We next represent estate s by its induced sub-graph. This is the subset of vertices
corresponding to the estate’s lots Vs joint with the subset of edges Fs linking any pair
of those vertices in the block’s original graph G. So G5 = (Vs, Fs). Sub-graph G4 has
v, vertices and &4 edges. An important property of sub-graph G is its bipartiteness;
this it inherits from its parent graph G (Remark 4 (i)). Now let us label the two partite
sets of that bipartition Bs and B¢ such that |Bs| > |BS|. Set B defines sub-design bs
(the mn x 1 sub-design vector has 1’s whenever the corresponding lot belongs to B, and
0’s everywhere else), and as; = ts — bs. Both bs and as maximize windows daylit from
within the estate (Remark 4 (ii)). However, bs has 1 house, and when faced with x_;
also 4 — b, Ax_; externally daylit windows, more than as (Remark 4 (iii)).

We next define the chess estate. If v is odd, the chess estate coincides with bipartite
design b, (Definition 2). The chess estate is for the estate what the chess block is for
the block, i.e. a bi-coloring layout of houses and yards.

Definition 2 (Chess Estate)

The chess estate cs equals as or by if vs is even — and by if vs is odd.
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Blocks can be partitioned into estates in many different ways. We begin by dividing
the rectangular block into two identical estates along its horizontal axis of symmetry.
For now we restrict attention to blocks that are “small”, i.e. for which n < 5. Fig.
illustrates one such symmetric partition of a small block into two equal-sized estates,
on the 6 x 5-block. Lots on one side of the inter-estate boundary (heavy dividing line)
belong to one sub-developer, lots on the other side to the other. Much can be learnt
from consulting this special case. But neither of subsequent Propositions 5 and 6 are
restricted to the 6 x 5 block. Our results go through unchanged also with two symmetric
odd-sized estates on, say, the 6 x 3-block, the 6 x 1-block, the 2 x 3-block, etc. In any
case, the problem of finding a Nash-equilibrium remains formidable enough with a 6 x 5
-block. Either sub-developer has 2! sub-designs to choose from.

The sub-developer maximizes subdivision profit, II;. So he solves

max Il = pN; + v(4N, — ¢, Az, — x,Ax_;) s.t. 'z = Ny and z, i, € {0,1}. (20)
Ls,IVs
Earlier we saw how block profit maximization can be broken down into steps. Essentially
that same procedure we may apply to the estate, too. In the first step we identify the
estate’s daylight frontier A(Ng, b_s), conditional on the other estate’s sub-design b_;
(eq. (21)). In the second step we pick the profit maximizing point on that frontier (eq.
(22)). The only novelty here is that estate frontiers are interdependent. One estate’s
frontier depends on the other estate’s design, and vice versa. This interdependence
shows up in the composition of the estate’s externally daylit windows, A, (see eq.
). Those, after all, directly depend on the neighboring estate’s design, x_,.

As(Ng,b_g) = max Agi(xs) + Aso(s) s.t. d'ms = Ny (estate frontier). (21)
zs
IIs(p,v) = max pNs + vAg(Ng, b_y) (max. estate profit).(22)

The first step calls for finding either estate’s daylight frontier, As(Ns, b_s), i.e. the
daylight frontier implied by the other estate’s choosing the chess estate design bs. We
start by identifying that point on the frontier that yields maximum daylit windows for
the estate. This is the combination of houses and daylit windows associated with the
chess estate bs (Proposition 5 (i)). Chess estate by fully exploits the estate’s capacity
for internal daylighting; it then adds the most external daylight possible, even as it also
incurs b, Ab_; occlusions. The sub-developer could minimize those, by shifting occluded
houses along the inter-estate boundary into more advantageous positions.

Unfortunately, such rearrangements on frontage lots, away from the pattern dictated
by the chess estate, destroy more internal daylightings than they add external ones. In
Fig. (7a), shifting the occluded house on lot (4,3) in B to lot (4,4) in B creates a
single external daylighting at the expense of three internal daylightings, lost along each
of the three odd-length paths in blue, green and yellow on screen. The remainder of
the daylight frontier then is straightforward. To the left of @), it has slope 4, and to
the right of @ it has slope 4 — b Ab_, < 4 (Fig. (8al)). The daylight frontier has an
extreme point, or a “kink”, at @ (Proposition 5 (iii)). It defines the (shaded) convex
opportunity set.

In the second step the sub-developer selects the best combination of houses and daylight
on the frontier (point R in Fig. (8al)). As long as contours slope upwards by strictly
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(1111

(a) Chess Estates Block (b1, bs) (b) Chess Block (ai, bs)
iff 0<—p/v<1 iff 1<—p/v<4
N1:8:N2 N1:7,N2:8
Al,i =22 = Ag’i a/]_A(Ll —al) = 227 bIQA(LQ —b2) = 22
bllAbQ =3 = b/QAbl a’lAbg = 0, b’2Aa1 =0
bllA(LQ — bg) =0= béA(Ll — bl) CLllA(LQ — bg) = 2, bIQA(Ll — Cll) =3
bif =7=0bf ayf =4,bf =17
A =29 = A, Ay = 28, Ay =32
A =58 A =60

Notes: (i) Here the block is divided into two equal-sized estates. Estate 1 comprises all (black or white) lots
below the horizontal line, estate 2 all (grey or white) lots above it. (ii) Expressions in the captions successively
document estates’: total houses (¢/xs), within-block daylightings (z,A(ts — @s)), cross-block occlusions or
negative externalities (@, Ax_s), cross-block daylightings or positive externalities (x,A(t_s — ®_s)), street
daylighting («/ f) and daylit windows As. (iii) Panel (a) shows two chess estates, ¢1 and c2. Panel (b) has a
chess estate for estate 2, c2, but not for estate 1.

Figure 7: Nash-equilibria on two estates

less than 1 (i.e. the unbroken straight contour in Fig. (8a])), the profit maximizing
design also is the one that has maximum daylight windows on the estate. Thus the
chess estate is the optimal response to the opposing estate’s chess estate, and vice
versa. Daylight frontier and optimum solution shown in Fig. really apply to both
players, in setting s equal to 1 and 2. A symmetric Nash-equilibrium (bs, bs) has both
sub-developers implement the chess estate (Proposition 5 (iv)). Note the commentary
to Fig. . It fills in a number of details we have not addressed in the main text.

Let us inspect the block configuration b; + by that obtains in Proposition 5’s Nash-
equilibrium. This configuration clearly differs from the chess block ¢ (in either of the
latter’s appearances). Not only does it have occlusions (which the chess block has not).
Also it has 1 house more (than the chess block). Nash-equilibrium (b1, bs) is denser
than the chess block ¢. Sub-developers in Fig. do what we expect them to do:
they ignore the occlusion externality from building up, and so build up more than they
otherwise would. As a result, Nash-equilibrium is inefficient (Proposition 5 (v)).

Proposition 5 (Equilibrium: Chess Estates Blocks near the Center)

Suppose m = 2, n < 6, and vs odd.

(i)
(ii)
(iii)

The estate sub-graph G has edge connectivity 2, ks = 2.
The chess estate by mazimizes daylit windows, maxg, Ag(xs) = Ag(bs) = 4|Bs| — bl Ab_;.
The estate’s daylight frontier As(Ns,b_g) is

4N for all integers between 0 and |Bs| — 1.

At = { {18, %)
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(a) Facing a chess estate b_, (b) Facing bipartite sub-design a

Figure 8: Estates’ daylight frontiers and optimal actions in Nash-Equilibrium

(iv) A profile of chess estates, (bs,b_s), is a Nash-equilibrium iff —p/v < 4 — b, Ab_j.
(v)  Nash-equilibrium (by, by) has 1 house more than the chess block ¢, and is inefficient.

Proof of Proposition 5:

(i) Two vertices of the lattice graph G in Fig. lie on a common cycle. [

(ii) Consider some x5 # by such that 05 = As(xs) — Ag(bs) > 0. If &5 has more (or
less) frontage houses than bs, then A(xs) < A(bs) (akin to Proposition 2 (ii)). So
xs has as many frontage houses as bs. But then d5 < 2. (Only 2 frontage houses
are not daylit with bs.) To collect those 2 extra external daylightings, s must
surely place (at least) 1 house on a lot in B¢ and another on a lot in Bs. There
are 2 edge-disjoint paths between those houses (by Proposition 5 (i)). These are
of odd length (by Remark 1 (v)), and so 2 internal daylightings are lost. Thus

As,o(ws) - As,o(b) =2 < As,i(bs) - As,i(ms)a (24)

and so Ag(xs) — As(bs) < 0. O

(iii) At Ny < |Bs|, 4N, is the maximum number of daylit windows (by eq. (19));
while at Ny = |Bs|, As(bs) = 4|Bs| — b,Ab_; is (by Proposition 5 (ii))). O

(iv) Profit contours for estate s have slope —p/v. Since by assumption —p/v is less
than the slope of the daylight frontier “after the kink”, 4 — b/ Ab_,, the highest
contour selects point ) on the estate’s frontier (Fig. (8a). Sub-design by is the
best response to chess estate b_g. Now apply s = 1,2 to parts (i), (ii), (iii). O
(v) Since ¢/(by + by) = ¢/'by + t/ay + 1, the equilibrium block by + by has 1 house
more than the chess block by + ag, or e. Also, profit II(b; + b2) is not maximum
because (by Proposition 4 (i)) uniquely profits II(b; + a2) or II(a; + by) are. O

Proposition 5 discusses Nash equilibrium if profit contours slope upwards by less than
4 — b, Ab_,. Proposition 6 next addresses Nash-equilibrium for when the contours of
profit slope upwards by more. For that Nash-equilibrium we suggest (b1, a2) or (aj, bs)
as trial candidates. Fig. illustrates (ai,bs), and Figs. and jointly
illustrate the two sub-developers’ asymmetric decisions. Sub-developer 2 (in Fig. ,
for s =2 and —s = 1), in facing a;, faces no occlusions when building chess estate bs.
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This is his profit maximizing choice P on the frontier, given the dashed contour.

Proposition 6 (Equilibrium: Chess Blocks Away from the Center)
Suppose m = 2, n < 6, and vs odd.
(i)  The frontier of estate s when facing b_s is given by eq. .
(ii)  The frontier of estate s when facing a_s is As(Ns,a—_s) = 4Ny for all integers between 0 and |Bs|.
(iii)  Strategy profiles (bs,a_s) and (as,b_s) are Nash-equilibria iff —p/v > 4 — b, Ab_;.
(iv)  Both Nash-equilibria mimic the chess block. We say that sub-developers tacitly collude.

Proof of Proposition 6:

(i) See proof of Proposition 5 (iii).

(ii) By Proposition 2 (ii), 4Ny is the global maximum. So it also is given a_s. O

iii) Given —p/v > 4 — b, Ab_g, profit contours are dashed lines in Figs. and
. Point @ (i.e. sub-design ay) is best for sub-developer 1 given b_g, and point
P (the chess estate) b_g is best for sub-developer 2 given as. Apply s =1,2. O

iv) It is @; + by = b and b; + ay = a. So the chess block ¢ obtains always. [J

Sub-developer 1 (in Fig. for s = 1 and —s = 2), given his opponent’s bs, shies away
from the occlusions involved when choosing the chess estate b; also. Sub-developer 1
instead “plays” a;. Point @ in Fig. yields his highest dashed contour. We note
that the resulting aggregate configuration for the block, by + a9, coincides with the chess
block. This identifies yet another property of the chess block. Now the chess block also
emerges as an equilibrium outcome in sub-developer competition, too. Effectively sub-
developers avoid confrontation. We say they collude tacitly (Proposition 6 (iv)). More
succinctly, here sub-developers behave as if acting jointly and cooperatively, picking
the design a block developer would pick (Propositions 1 through 4). More generally,
developer counts do not capture real estate competition.

Propositions 5 and 6 determine the spatial structure of our closed city. Consider the
expression 4 — b, Ab_ first. On the one hand, expression gives the external daylight-
ing advantage of the denser bipartite sub-design, bg, relative to as. It represents the
daylit windows to be gained from aggressively building up on the estate. On the other
hand, the same expression is a threshold real rent. Whenever —p/v falls short of it,
chess estates block get built and sub-developers compete with, and occlude, each other;
whereas whenever —p/v exceeds it, chess blocks get built and sub-developers collude
not to occlude. In Fig. , we see how the chess estate block unravels when —p/v
falls. As the set of contours rotates downwards, point R gets replaced by point ). Not
insisting on adding one more daylit window to the estate makes sense when this allows
the sub-developer to avoid the risen cost —p of having one house more.

Equating threshold dark rent with dark rent in eq. and inverting for threshold
distance 7 gives the distance at which blocks switch designs,

7 =7 — bLAb_u/t (threshold distance). (25)

Developers supply different housing qualities to households (i.e. houses both with 4
and 3 daylit windows). Yet because any extra daylit window is priced at its valua-
tion, households are indifferent between qualities. We may lump together the different
qualities on offer into a single housing supply aggregate, which in turn accommodates
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exogenous city population L. So

7/(m+1) 7/(m+1)
1
V;_ Z 4(1+7) + Z 4(1+r) = L/h  (housing market equilibrium). (26)
p=1 p=1

is the housing market equilibrium condition. Equations and jointly determine
the equilibrium size of the city 7 and the threshold distance 7. Proposition 7 summarizes
the properties of a city that is built by pairs of sub-developers on odd-sized estates.

Proposition 7 (Equilibrium Urban Spatial Structure with Sub-Developers)
Suppose m = 2, n < 6 and all vs odd.

(i) Chess estates (b1, ba) are built from 0 to T, and chess blocks ¢ from T out to T.
(ii)  Cities with larger blocks (i.e. n larger) have chess blocks earlier, and more.

Proof of Proposition 7:

(i) In main text.

(iii) Expression b, Ab_j is increasing in n and, by eq. , so is 7 — 7. But then
7 is decreasing in n (else housing supply on the Lh.s. of exceeds L). [

We finally turn to the role of time-at-home for urban spatial structure and rents.

5 Time at Home

The secular reduction in working hours, and in time-at-work more recently, suggests
(if not implies) that households spend more time at home. Once they do so, they
should appreciate the quality of their home more. In particular, we should observe a
secular increase in daylight valuation v. Let us experiment with how this affects city
equilibrium.

Suppose 7 were to increase (so that 7 were to increase, too). Then housing supply would
exceed city population, violating . So threshold 7 must decrease in response to an
increasing v. At the same time, 7 must increase. Suppose it did not. Then housing
supply would fall short of L, again violating . In sum, the city expands, is less
dense, and occludes itself less. Also, the number of denser blocks contracts while pure
chess blocks expand. Sub-developers collude more than ever (Proposition 7 (i)). Bright
houses not only increase their share in city housing; they have become more expensive
as p(r) + 4v unambiguously increases in 7, via eq. (Proposition 7 (ii)).

Ultimately, when 7 has fallen to 0, only chess blocks remain. Dark houses may have be-
come cheap; but they have also become unavailable. Dark houses have become crowded
out. The only remaining housing quality are fully daylit houses, and these houses have
become ever more expensive (Proposition 7 (iii)).

Proposition 7 (Time at Home, Developer Collusion, and House Prices)

(i) Prevalence of chess blocks is increasing (of chess estates blocks is decreasing) in time-at-home.
(ii)  Bright rent p(r) + 4v (dark rent p(r)) is increasing (decreasing) in time-at-home.
(iii)  Pully daylit houses are the only remaining quality once valuation v exceeds t7/bl, Ab_j.
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6 Conclusions

Anecdotally, real-world blocks increasingly resemble the chess block. We first show that
the chess block maximizes daylit houses on the block, daylit windows on the block, and
block profit. These properties explain the chess block’s perennial appeal to large real
estate developers. Moreover, these properties have growing appeal to real estate de-
velopers as households’ appreciation of daylight grows. A secular reduction in working
hours, but also more opportunities for working from home, suggest that today house-
holds value daylight more than they did in the past. Greater daylight valuation begets
greater collusion in the real estate industry. Only colluding developers are able to fully
internalize, and hence best exploit, the within-block externalities that characterize ur-
ban daylight. Collusion drives real estate prices up, by driving marginal residents out.

A large strand of the recent urban economics literature asserts that local government
zoning prevents cities from becoming denser. This paper asserts that households value
daylight, and that urban yards generate the daylight that households desire. If chess
blocks are profit maximizing to today’s large and small developers, building up on
their yards will make property values decrease. This not only explains strong resistance
against rezoning across the US; it also questions its welfare justification. Another strand
of the recent urban economics literature asserts that urban land parcels may be too small
for modern development. Land assembly may not prevail as much as it should. This
paper asserts that large (“block”) developers are even less likely than smaller (“sub-")
developers to build up on their land. Small developers push for more housing than large
developers do. More land assembly will create less dense, instead of denser, housing.

We note that the chess block is not just about daylight. It also provides its houses with
the many amenities that typically come along with the availability of daylight. Homes
that are daylit better also are more likely to: enjoy greater calm, have a view, be more
private, extract photovoltaic energy, allow its residents to evade air-borne infectious
diseases such as Covid-19, escape one’s neighbors’ emissions from cooking, smoking etc.
Alternatively, homes that are daylit better may offer access to a “garden club” whose
members are the residents of the houses adjacent to it. We suppress mention of these
complementary benefits throughout this paper. But they may be just as relevant as,
or even more relevant than, daylight itself is. They reinforce resident, developer and
ultimately also our interest in the availability of urban daylight.

A companion paper of ours (Dascher/Haupt (2025)) goes beyond the question of optimal
block design, exploring optimum urban design instead. With its broken streetfront, the
chess block reduces the block’s attention to the street. There plainly are fewer eyes
on the street. Jacobs-style safety in public space suffers if streets’ adjoining blocks no
longer align with the street. In addition, the chess block offers less retail space aligning
with the street. All of this makes the chess block’s daylighting properties less impressive.
There may be a trade-off to resolve between the quality of its private space and that of
its public space. The chess block is not necessarily the optimal urban block.

Empirical work will have to contend with the endogeneity our model implies. If time-
at-home drives up block uniformity, and if block uniformity really devastates urban
retail and neighborhood safety, then block uniformity likely drives up time-at-home.
Dynamically, increasing time-at-home becomes self-reinforcing. The more we stay at
home, the less varied and safe our public spaces, and ...hence the more we must stay
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at home.

Suppose time-at-home really does play the secular role we attribute to it here. We ad-
dress two concerns for the near future. (1) (Return to Office) If time-at-home increases
further (e.g. via an even shorter work week), so will the price of real estate. Alterna-
tively, should time-at-home fall (as with a policy of return-to-office), so will the price
of real estate. (2) (Global warming) If the planet heats up further, today’s daylight
valuation may well overestimate tomorrow’s daylight valuation. Soon it may be shaded,
rather than daylit, living that enjoys the positive premium. If positive dark rent enters
the flow of discounted future rents, chess block proliferation will not serve us well.

7 Appendix

Replace A;(z) + Ao(x) in maximization problem (9)) by A, then use decomposition
and rewrite the resulting expression as

max {max pN + v(4N — x’Az) st. € {0,1} and L'a::N}
xT

Shifting pN and v (as constants to the inner maximization problem) outside the curly
brackets gives

max pN + v {max (AN — z'Az) st. zj,€{0,1} and Jx= N}
x

The maximization problem in curly brackets defines the daylight frontier, A(N), in eq.
, and the resulting overall program becomes that given in .
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