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L arge language models (LLMs), such as OpenAI’s ChatGPT, 
have significantly transformed text generation since gaining 

traction in 2022. On the basis of the transformer architecture 
and trained on massive—often undisclosed—amounts of text, 
LLMs can produce credible text output without needing many 
examples (few-shot learning and prompting, or zero-shot learn-
ing and prompting). LLMs have undergone extensive testing in 
medical settings, including for transforming free-text radiology 
reports into standardized reporting templates and for the data 
mining of free-text CT reports in lung cancer (1,2). The intrin-
sic “knowledge” of the models in answering text questions in a 
radiology board-style examination was demonstrated, and LLMs 
were recently shown to help simplify radiology reports (3,4).

More recently, GPT-4 with vision, called GPT-4V (OpenAI) 
(5), which is capable of processing image input, was introduced. 
Large vision-language models such as this could bring us closer 

to foundation models, which could be used for a broad spec-
trum of different tasks (6).

A qualitative assessment reported promising performance 
in creating radiology reports from single medical images but 
also highlighted current limitations of the model (7). “Red 
team” experts (ie, professionals tasked with testing the vulner-
ability of a system) also reported inconsistencies in interpret-
ing radiologic images (8). Nevertheless, such widely available 
models will inevitably be misused for unintended applications, 
circumventing safeguards.

Given the potential and risks involved, a thorough analy-
sis of these models is critical, but peer-reviewed literature on 
GPT-4V remains scarce. Promising performance was reported 
in a qualitative study on US image analysis and when GPT-4V 
was compared with LLMs without vision capabilities in medical 
case challenges (9,10). Other authors deemed the model unfit 
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for medical image interpretation and reported, for example, 
that the model was outperformed by commercial chest radio-
graph interpretation software (11–13). Most authors included 
only a limited number of publicly available images and no nega-
tive controls, thereby limiting model performance assessment. 
Public data may have been included in training GPT-4V, poten-
tially biasing toward better results. Other works have yet to be 
peer-reviewed and have similar limitations (14–16). A quantita-
tive analysis comparing the performance of GPT-4V to that of 
human readers on unseen data is still lacking.

Therefore, the aim of this study was to quantitatively assess 
whether GPT-4V, a model not explicitly optimized for medical 
applications, can interpret radiologic images as accurately as hu-
man readers using unseen data.

Abbreviations
AI = artificial intelligence, LLM = large language model

Summary
OpenAI’s GPT-4V reliably identified the imaging modality and 
anatomic region but could not safely detect, classify, or rule out 
abnormalities on single MRI, CT, and radiographic images.

Key Results
 ■ The ability of OpenAI’s GPT-4V, a large vision-language model, to 
analyze 515 CT, MRI, and radiographic images from neurologic, 
thoracic, and musculoskeletal regions was retrospectively assessed.

 ■ The model detected the imaging modality and anatomic region 
with 100% and 99.2% accuracy, respectively.

 ■ Limited diagnostic performance was observed for the model 
in free-text reports (accuracy, 36.5%) and binary classification 
tasks (sensitivity, 78%; specificity, 32.3%), with a tendency to 
overdiagnose abnormalities (86.5% and 67.7% false-positive rates 
for free-text and binary classification tasks, respectively).

Materials and Methods

Data Acquisition
The institutional review board approved this retrospective 
Health Insurance Portability and Accountability Act–compli-
ant bicenter study (vote no. 23–3545–104). The requirement 
to obtain informed consent was waived due to the retrospective 
nature and analysis of anonymized imaging data. The images 
originated from a university hospital and a tertiary hospital spe-
cializing in neurologic care.

A diverse selection of common pathologic findings and imag-
ing modalities frequently addressed by artificial intelligence (AI) 
models were intentionally chosen, as the objective of the work was 
to test the potential of GPT-4V as a foundation model. The se-
lected categories included neuroradiology (ischemic stroke, brain 
hemorrhage, brain tumor, multiple sclerosis), cardiothoracic ra-
diology (pneumothorax, pulmonary embolism, pneumonia, lung 
cancer), and musculoskeletal radiology (fracture). Pathologic sub-
types were not differentiated. For example, brain tumor included 
meningioma, glioblastoma, and brain metastases. Brain hemor-
rhage included epidural, subdural, subarachnoid, and intraparen-
chymal hematomas.

A convenience sample of patients was created by querying ra-
diology reports in the radiologic information systems of the hos-
pitals. The reference standard diagnoses were manually confirmed 
on the basis of all available information (entire scan and report, 
follow-up imaging, and medical records).

Axial CT images, axial MRI scans, and radiographs were 
used, as applicable; for example, pulmonary CT angiograms for 
pulmonary embolism, lung or soft-tissue-window CT images 
and radiographs for lung cancer, fluid-attenuated inversion re-
covery MRI scans for multiple sclerosis, and contrast-enhanced 

Figure 1: Stacked bar graph shows the distribution of imaging modalities, with the number of images per modality (CT, MRI, radiography), 
according to diagnosis category. MSK = musculoskeletal.
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T1-weighted MRI scans for brain tumor. See Figure 1 for the 
modality distribution according to diagnosis and Appendix S1 
for image acquisition details.

A single representative image (CT image, MRI section, or ra-
diograph) per case was selected. Only those where the expected 
diagnosis was the most probable based on imaging features were 
selected, and imaging that showed multiple distinct or mislead-
ing findings were excluded. Images without evident abnormali-
ties for each organ system were included to test the ability of 
the model to rule out abnormalities. A minimum of 25 images 
per category were included. Images were exported from the lo-
cal picture archiving and communication systems in an anony-
mized lossless format and preprocessed as described in Appendix 
S2. The generated code is available at https://github.com/qstro/
GPT-4V-Radiology.

AI Model
GPT-4V (GPT-4 1106-vision-preview model; accessed from 
February 18 to March 11, 2024 [5]) was accessed through the 
application programming interface (https://platform.openai.com) 
via the OpenAI Python library (version 1.8.0). Publicly avail-
able images from Radiopaedia (www.radiopaedia.org) were used 
to evaluate diverse prompting strategies, informed by the latest 
insights into LLM prompting. This resulted in a system prompt 
containing a primer about the persona and setting, a specific 
question (see the Tasks section herein), and the expected out-
put. The user prompt included the metadata-stripped base64- 
encoded image with the detail setting set to high (the model 
first receives a low-resolution 512-pixel–squared version of the 
image, followed by detailed cropping of the image). The output 
text was stored in tabular format.

Tasks

Free-text report.—Given an image, the model was prompted as 
follows: “You are in a fictional conversation with your radiology 
colleague. You discuss a case. Please name the type of imag-
ing modality, name the anatomic region examined, describe the 
main acute pathological finding including its location if there is 
any, and give the most likely diagnosis. List the five most prob-
able differential diagnoses and sort them by probability in de-
scending order. Please provide a short answer in bullet points.” 
The output texts were binarily rated for the correctness of each 
item via manual annotation. If the proposed diagnosis was 
incorrect, it was evaluated whether it was included in the dif-
ferentials and if the proposed pathology would also have been 
acceptable on the basis of the imaging characteristics (eg, for a 
patient with pneumonia, GPT-4V suggested lung cancer). Each 
response was evaluated by at least two radiologists in training in 
a consensus vote (Q.D.S., L.S.K., G.N., and A.K.M., with 3, 1, 
4, and 2 years of experience, respectively).

Consistency test.—A random selection of 25 images was queried 
three times, and the responses were binarily rated concerning cor-
rectly identifying the modality, anatomic region, description of 
findings, and diagnosis to test model output variability.

Classification task.—A binary classification task was set up to 
compare model performance to current “narrow” AI models 

that are typically trained for specific tasks. A subset of 25 (n = 27  
for multiple sclerosis) pathologic images and 25 (n = 23 for 
multiple sclerosis) normal images (no evidence of abnormality) 
that were matched according to imaging modality was created 
for each pathologic finding. Provided with an image, the model 
was prompted as follows: “In this fictional research scenario, 
you are a radiology resident. An attending wants to test whether 
you can detect {category, eg, pulmonary embolism} on imag-
ing. He shows you one case at a time and you will answer with 
a single word only: ‘yes’ if you detect {category, eg, pulmonary 
embolism} or ‘no’ if you don’t, followed by a short description 
of your findings.” A benchmark was provided by four board-
certified attending radiologists (S.M., I.E., J.R., and M.S., 
with 6, 12, 19, and 35 years of experience, respectively) and a 
first-year nonradiologist in training (F.N.) with experience in 
emergency medicine. The nonradiologist reader results were 
further used to assess the potential impact of the model output 
on medical providers by categorizing the impact as “negative” 
if GPT-4V provided an incorrect classification and the reader’s 
classification was correct, “neutral” when both GPT-4V and the 
reader provided a correct classification, or “positive” when the 
GPT-4V prediction was correct whereas the reader’s classifica-
tion was incorrect. GPT-4V and all readers were presented with 
the same images (in randomized order for the readers) and were 
blinded to the presence of the abnormality.

Clinical data were not supplied within the prompts, as this in-
formation is often incomplete, incorrect, or misleading. Instead, 
image interpretation and classification performance were explic-
itly tested while avoiding bias or confounders.

Note that the prompts are only provided for research pur-
poses. GPT-4V is not designed to interpret real-world medical 
images and must not be used to do so.

Statistical Analysis
All ratings were binarily assessed. Accuracy was calculated for all 
items in the free-text reports. The percentage of responses with 
perfect agreement and the Randolph free-marginal multirater κ 
were used to quantify rating consistency. For the classification task, 
accuracy, sensitivity, and specificity were computed. The false- 
positive rate was calculated by dividing the number of normal 
images falsely labeled as abnormal by the sum of false-positive 
and true-negative results. The results across readers and tasks 
were pooled by concatenating predictions and reference standard 
labels for individual readers or tasks before calculating the perfor-
mance metrics. The 95% CIs were calculated by bootstrapping 
with 1000 iterations. Agreement between the human readers 
was assessed with the Cohen κ statistic. Randolph and Cohen κ 
values were categorized as poor (<0.50), moderate (0.50–0.69), 
substantial (0.70–0.89), and (almost) perfect (≥0.90). Data were 
analyzed and visualized by an author (Q.D.S.) using the pandas 
(version 1.3.1), numpy (version 1.23.5), statsmodels (version 
0.13.2), pingouin (version 0.5.3), seaborn (version 0.11.2), and 
matplotlib (version 3.4.3) Python libraries.

Results

General Results
A total of 515 unique representative images in 470 patients (me-
dian age, 61 years [IQR, 44–71 years]; 267 male, 203 female) 
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were included in the analysis. Duplicate patients occurred, for 
example, in a patient with lung cancer who had pneumotho-
rax at another time point and a patient with multiple fractures 
in different regions. Regarding the imaging modality, 50.5% 
(260 of 515) of included images were acquired with CT, 28.3%  
(146 of 515) were acquired with MRI, and 21.2% (109 of 515) 
were acquired with radiography. Of the included images, 67% 
(345 of 515) were abnormal and 33% (170 of 515) were nor-
mal. Although GPT-4V is fine-tuned to refuse radiologic image 
interpretation, it only did so in 16 instances of free-text reports 
and was reprompted until it provided an interpretation.

Free-Text Results
The imaging modality was correctly identified in all 515 im-
ages, and the anatomic region was correctly identified in 99.2% 
(511 of 515). A pulmonary CT angiogram was identified as an 
abdominal CT image, although no abdominal structures were 
present in that section. A radiograph of the left elbow joint was 
labeled as a radiograph of the left knee, and two CT images of the 
wrist were classified as CT images of the foot or head.

The main finding was correctly identified in 36.5% (188 of 
515) of images. Performance depended heavily on the pathologic 
finding and imaging modality. For example, GPT-4V missed all 
pneumothoraxes (0 of 33 correctly identified) and almost all pul-
monary embolisms (one of 25 identified), but had an accuracy 
of 90% (45 of 50) in diagnosing brain tumors on MRI scans. 
Concerning inconspicuous chest imaging, 0% (0 of 50) of CT 
images but 60% (12 of 20) of radiographs were correctly identi-
fied as normal. The localization of findings was often incorrect, 
especially concerning laterality.

Imaging alone is not always unequivocal. For incorrect diagno-
ses, differential diagnoses were also considered, and the suggested 
diagnoses were analyzed. For multiple sclerosis, for example, the 
correct diagnosis was included in the differentials for 95.2% (20 
of 21) of images. The suggested diagnosis could also have been 
acceptable in 71.4% (15 of 21) of images.

Overall, the model clearly tended to overdiagnose abnor-
malities, with a false-positive rate of 86.5% (147 of 170 images). 
Chest CT readings mainly included hallucinations of upper me-
diastinal masses, lung cancer, or pneumonia. Normal brain CT 
images were most often described as showing ischemic stroke or 
hemorrhage, and normal brain MRI scans as showing glioma or 
multiple sclerosis.

Table 1 provides results for each diagnosis category, and  
Figure 2 shows example free-text reports for two brain hemor-
rhage images.

Consistency Test
Agreement across the three generated output reports was  perfect, 
with a rate of concordance of 100% (25 of 25) and a Randolph κ 
of 1.0 for items where the model showed high accuracy (modal-
ity, anatomic region). Items where the model performed poorly 
showed only moderate agreement (Randolph κ values of 0.68 for 
the description of findings and 0.52 for the diagnosis), which may 
indicate a higher level of randomness in model answers (Table 2).

Classification Tasks
GPT-4V showed overall poor performance in binary classifica-
tion tasks (Table 3). The overall accuracy across all tasks was 

only slightly above chance (55.3% [95% CI: 51.1, 60.2]). The 
best results were observed for pneumonia, with accuracy, sen-
sitivity, and specificity of 64% [95% CI: 50, 76], 96% [95% 
CI: 86.4, 100], and 32% [95% CI: 14.3, 50], respectively.  
The relatively high overall (pooled across tasks) sensitivity of 
78% [95% CI: 72.6, 83.3] came at the expense of a low speci-
ficity of 32.3% [95% CI: 26.4, 38.2] and a false-positive rate 
of 67.7% (151 of 223 images). For example, only two of 25 
normal brain CT images of the brain hemorrhage task were 
correctly classified.

In comparison, the human readers performed consider-
ably better, with almost perfect agreement (Cohen κ ≥0.9 for 
all reader pairs) (Table 4). The performance ranged from an 
accuracy of 90.4% [95% CI: 86.8, 94], sensitivity of 90.4% 
[95% CI: 84.6, 95.4], and specificity of 90.4% [85.1, 95.2] 
for pulmonary embolism to perfect results for ischemic stroke 
and brain tumor. See Figure 3 and Appendix S3 (Table S1) for 
details. Owing to the high interrater agreement, the results of all 
the readers were pooled.

The hypothetical impact of the nonradiologist relying on 
GPT-4V would have been positive in 2% (nine of 450), neutral 
in 53.3% (240 of 450), and negative in 43.3% (195 of 450)  
of images.

In addition, multiple image inputs were tested for intracra-
nial hemorrhage detection, with no relevant change in perfor-
mance observed. Details are provided in Appendix S4 (Fig S1, 
Table S2).

Discussion
Large vision-language models can potentially solve imaging tasks 
without special training or fine-tuning. In our quantitative as-
sessment of OpenAI’s GPT-4V (5), the model accurately assessed 
the imaging modality (CT, MRI, or radiography) and anatomic 
region (brain, chest, or musculoskeletal system). However, detec-
tion and interpretation of pathologic findings were not reliable, 
and false-positive findings were frequent.

Obvious abnormalities, such as brain hemorrhage and 
brain tumor, were identified relatively often, but when tasked 
with generating free-text reports, GPT-4V missed more subtle 
findings such as pulmonary embolism and pneumothorax. 
Concerning radiography, one reason may be the limited in-
put resolution. The image is automatically rescaled so that the 
shorter side is 768 pixels, whereas the matrix size for digital 
radiography is 2000 × 2500 pixels (17). Furthermore, the vi-
sual representations derived by the transformer encoder might 
render detection of subtle intensity changes more challenging 
than high-contrast variations, such as those found in brain 
hemorrhage.

Even though GPT-4V theoretically knows the standard con-
vention of how radiologic images are displayed and sometimes 
emphasizes it in its responses, many errors concerning the side of 
the abnormality could be observed. These errors may be due to 
limitations in contextual understanding (medical domain devi-
ates from general convention, and GPT-4V might fail to make 
a connection between the image and the expected context), 
propagating errors through internal preprocessing steps (eg, crop-
ping), or in model image perception (images are encoded into 
a numerical representation from which features are extracted). 
Additionally, confabulations about the exact anatomic location 
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Table 1: Accuracy of Free-Text Reports Generated by GPT-4V

Diagnosis  
Category and 
Modality

Modality 
Correct

Anatomic 
Region  
Correct

Exact  
Location 
Correct

Laterality 
Correct

Description 
Correct

Diagnosis 
Correct

Diagnosis 
Among  
Top 5 DDs

Suggested 
Abnormality 
Also Possible

All categories
 All modalities 100.0 

(515/515)
99.2 

(511/515)
30.8 

(100/325)
50.5 

(155/307)
47.4 

(244/515)
36.5 

(188/515)
20.8 

(68/327)
26.3 

(86/327)
Normal brain
  CT 100.0 (27/27) 100.0 (27/27) NA NA 3.7 (1/27) 0.0 (0/27) 0.0 (0/27) 3.7 (1/27)
  MRI 100.0 (48/48) 100.0 (48/48) NA NA 8.3 (4/48) 2.1 (1/48) 2.1 (1/47) 4.3 (2/47)
Ischemic stroke
 CT 100.0 

(36/36)
100.0 

(36/36)
33.3 

(11/33)
45.5 

(15/33)
30.6 

(11/36)
47.2 

(17/36)
5.3 

(1/19)
5.3 

(1/19)
 MRI 100.0 

(14/14)
100.0 

(14/14)
30.8 

(4/13)
36.4 

(4/11)
92.9 

(13/14)
64.3 

(9/14)
60.0 

(3/5)
80.0 

(4/5)
Brain hemorrhage
 CT 100.0 

(47/47)
100.0 

(47/47)
23.9 

(11/46)
45.7 

(21/46)
85.1 

(40/47)
66.0 

(31/47)
81.3 

(13/16)
18.8 

(3/16)
 MRI 100.0 (3/3) 100.0 (3/3) 50.0 (1/2) 50.0 (1/2) 33.3 (1/3) 33.3 (1/3) 0.0 (0/2) 0.0 (0/2)
Multiple sclerosis
 MRI 100.0 

(31/31)
100.0 

(31/31)
50.0 

(15/30)
39.1 

(9/23)
93.6 

(29/31)
32.3 

(10/31)
95.2 

(20/21)
71.4 

(15/21)
Brain tumor
 MRI 100.0 

(50/50)
100.0 

(50/50)
34.8 

(16/46)
48.8 

(20/41)
90.0 

(45/50)
90.0 

(45/50)
80.0 

(4/5)
80.0 

(4/5)
Normal chest
 CT 100.0 

(50/50)
100.0 

(50/50)
NA NA 0.0 

(0/50)
0.0 

(0/50)
0.0 

(0/50)
2.0 

(1/50)
 Radiography 100.0 

(20/20)
100.0 

(20/20)
NA NA 65.0 

(13/20)
60.0 

(12/20)
0.0 

(0/8)
25.0 

(2/8)
Lung cancer
 CT 100.0 

(25/25)
100.0 

(25/25)
36.0 

(9/25)
38.1 

(8/21)
60.0 

(15/25)
36.0 

(9/25)
25.0 

(4/16)
56.3 

(9/16)
 Radiography 100.0 (6/6) 100.0 (6/6) 33.3 (2/6) 33.3 (2/6) 83.3 (5/6) 50.0 (3/6) 100.0 (3/3) 66.7 (2/3)
Pneumonia
 CT 100.0 

(25/25)
100.0 

(25/25)
32.0 

(8/25)
48.0 

(12/25)
80.0 

(20/25)
52.0 

(13/25)
66.7 

(8/12)
91.7 

(11/12)
 Radiography 100.0 

(25/25)
100.0 

(25/25)
47.8 

(11/23)
58.3 

(14/24)
84.0 

(21/25)
64.0 

(16/25)
77.8 

(7/9)
77.8 

(7/9)
Pulmonary 

embolism
 

 CT
100.0 

(25/25)
96.0 

(24/25)
0.0 

(0/25)
56.3 

(9/16)
4.0 

(1/25)
4.0 

(1/25)
0.0 

(0/24)
16.7 

(4/24)
Pneumothorax
 CT 100.0 (12/12) 100.0 (12/12) 8.3 (1/12) 36.4 (4/11) 8.3 (1/12) 0.0 (0/12) 0.0 (0/12) 75.0 (9/12)
 Radiography 100.0 

(21/21)
100.0 

(21/21)
31.6 

(6/19)
47.4 

(9/19)
23.8 

(5/21)
0.0 

(0/21)
4.8 

(1/21)
33.3 

(7/21)
Normal MSK
 CT 100.0 (6/6) 100.0 (6/6) NA NA 0.0 (0/6) 0.0 (0/6) 0.0 (0/6) 0.0 (0/6)
 Radiography 100.0 

(19/19)
100.0 

(19/19)
NA NA 57.9 

(11/19)
57.9 

(11/19)
0.0 

(0/8)
25.0 

(2/8)
Fracture
 CT 100.0 (7/7) 71.4 (5/7) 28.8 (2/7) 66.7 (2/3) 42.9 (3/7) 42.9 (3/7) 25.0 (1/4) 25.0 (1/4)
 Radiography 100.0 

(18/18)
94.4 

(17/18)
23.1 

(3/13)
92.7 

(13/14)
27.8 

(5/18)
33.3 

(6/18)
16.7 

(2/12)
8.3 

(1/12)

Note.—Data are percentages, with numbers of images in parentheses. The percentage of correct answers concerning each scored item of 
the GPT-4V–generated (OpenAI [5]) free-text results is reported for each anatomic region, modality, and diagnosis category. “Diagnosis 
Among Top 5 DDs” and “Suggested Abnormality Also Possible” were only scored if the proposed diagnosis was incorrect. “Exact Location” 
and “Laterality” were only scored in abnormal cases where the location or laterality was mentioned. DDs = differential diagnoses, MSK = 
musculoskeletal, NA = not applicable.
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of a lesion within the imaged volume occurred frequently (eg, 
regarding the correct cerebral lobe). Overdiagnosis is most likely 
due to the massive overrepresentation of certain abnormalities in 
the training corpus.

Recent research reported an intrarater agreement (κ) of 0.84 
when GPT-4V was used to assess images of malignancies via 
confocal laser endomicroscopy compared with 0.77 for human 
readers (18). We noted that the agreement strongly depended on 
the correctness of the answers, which declined as the responses 
became less accurate and more random. LLMs are designed to 

exert a certain degree of randomness to ensure output variability. 
However, this can potentially be a disadvantage if output accu-
racy is of interest.

We proposed a binary classification task for nine different ab-
normalities to compare the performance of GPT-4V in disease 
detection to that of published and commercially available AI 
tools. In all the tasks, GPT-4V yielded a subpar performance that 
specialized software can easily surpass. Examples are innumer-
able, including a sensitivity of 98.8% and specificity of 98.0% 
on test data for detecting hemorrhage on head CT images (19) 

Figure 2: Example images and GPT-4V (OpenAI)–generated free-text reports for brain hemorrhage. Left: Axial noncontrast head CT image in a 61-year-old female patient 
with a hematoma in the left basal ganglia, likely of hypertensive origin, and the corresponding model-generated free-text report show a correct main finding and diagnosis by 
GPT-4V. Right: Axial noncontrast head CT image in a 90-year-old male patient with a traumatic left frontal hematoma and the corresponding model-generated free-text report 
show an incorrect main finding and diagnosis by GPT-4V. Correct items in the response text are highlighted in green, while incorrect items are highlighted in red.
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or areas under the receiver operating characteristic curve greater 
than 0.9 for pneumothorax detection on chest radiographs (20). 
In contrast to GPT-4V, these “narrow” applications can perform 
only single (or occasionally a few) tasks and rely on the correct 
input for inference.

Errors in AI systems can have various negative consequences 
for all stakeholders. Patients, in particular, can be harmed, either 
by the delay in treatment when a diagnosis is missed, by receiving 
inappropriate therapy if the wrong diagnosis is established, or by 
being subject to undue diagnostic measures and stress when a nor-
mal finding is declared pathologic. We assessed the hypothetical 

impact of the output of GPT-4V on the performance of a non-
radiologist provider and found that this could have negatively af-
fected performance in up to 43.3% of the cases and positively 
affected performance in only 2.0% of the cases. A recent study 
showed that errors in AI models can affect even trained radiolo-
gists’ performance in chest radiograph interpretation (21).

One must keep in mind that GPT-4V is still under develop-
ment, and detailed technical specifications remain undisclosed (8). 
Input is restricted to a limited number of two-dimensional images, 
with multisection image stacks (eg, those in MRI and CT) not be-
ing suitable. Although not explicitly optimized to interpret radio-
logic imagery, LLMs are unreliable, especially in complex and rare 
abnormalities (22). ChatGPT may refuse to interpret images when 
directly asked, but this safeguard can easily be bypassed.

Given these results, potential applications of GPT-4V in its 
current form include detecting out-of-distribution data. In a re-
cent study, significant performance improvements were found, 
with an upstream in-distribution voting approach for chest radio-
graph classification (23). GPT-4V could render the acquisition 
of tailored data sets and training of specialized models obsolete.

The field of multimodal LLMs is rapidly evolving, and  
OpenAI is not the only competitor. Open-source models, such as 
LLaVA (Large Language and Vision Assistant) (24), are advanta-
geous in the medical context. These open-source models can be 
deployed locally, which guarantees the protection of sensitive data. 
Fine-tuning these models toward radiology report generation 
promises better performance and has already been performed, in-
cluding in LLaVa-Med (25), LlaVa-Rad (26), and CXR-LLAVA 
(27). This approach relies on large data sets of image-text pairs 

Table 2: Consistency Test

Item
Reports with  
Perfect Agreement*

Randolph  
Free-Marginal κ

Modality 100 (25/25) NA
Anatomic region 100 (25/25) 1.0
Description 76 (19/25) 0.68
Diagnosis 64 (16/25) 0.52

Note.—The percentage of free-text reports with perfect agreement 
and the Randolph free-marginal κ for testing consistency across 
three outputs are for correctly identifying the modality, anatomic 
region, description of findings, and diagnosis. The modality was 
correctly identified in all runs; however, free-marginal κ is not 
defined in cases with perfect agreement but only one label is 
present (zero division), leading to the reporting of NA. NA = not 
applicable.
* Data are percentages, with numbers of reports in parentheses.

Table 3: Performance in Binary Classification Tasks

Classification Task
GPT-4V Readers

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Pathologic finding
 Ischemic stroke 46.0 (23/50) 

[34.0, 60.0]
56.0 (14/25) 

[36.0, 75.0]
36.0 (9/25) 

[17.4, 55.2]
100.0 (250/250) 

[100.0, 100.0]
100.0 (125/125) 

[100.0, 100.0]
100.0 (125/125)  

[100.0, 100.0]
 Brain hemorrhage 54.0 (27/50) 

[40.0, 68.0]
100.0 (25/25) 

[100.0, 100.0]
8.0 (2/25) 

[0.0, 20.8]
99.6 (249/250) 

[98.8, 100.0]
100.0 (125/125) 

[100.0, 100.0]
99.2 (124/125) 

[97.4, 100.0]
 Multiple sclerosis 60.0 (30/50) 

[46.0, 74.0]
74.1 (20/27) 

[55.6, 89.7]
43.5 (10/23) 

[23.8, 64.7]
96.8 (242/250) 

[94.4, 98.8]
97.8 (132/135) 

[94.9, 100.0]
95.7 (110/115) 

[91.3, 99.1]
 Brain tumor 56.0 (28/50) 

[42.0, 70.0]
92.0 (23/25) 

[80.0, 100.0]
20.0 (5/25) 

[4.5, 36.0]
100.0 (250/250) 

[100.0, 100.0]
100.0 (125/125) 

[100.0, 100.0]
100.0 (125/125) 

[100.0, 100.0]
 Lung cancer 56.0 (28/50) 

[42.0, 68.0]
64.0 (16/25) 

[42.9, 81.8]
48.0 (12/25) 

[29.2, 66.7]
99.6 (249/250) 

[98.8, 100.0]
100.0 (125/125) 

[100.0, 100.0]
99.2 (124/125) 

[97.4, 100.0]
 Pneumonia 64.0 (32/50) 

[50.0, 76.0]
96.0 (24/25) 

[86.4, 100.0]
32.0 (8/25) 

[14.3, 50.0]
98.0 (245/250) 

[96.0, 99.6]
97.6 (122/125)  

[94.5, 100.0]
98.4 (123/125) 

[95.9, 100.0]
 Pulmonary  

 embolism
46.0 (23/50) 

[32.0, 60.0]
76.0 (19/25) 

[56.5, 91.7]
16.0 (4/25) 

[3.7, 33.3]
90.4 (226/250) 

[86.8, 94.0]
90.4 (113/125) 

[84.6, 95.4]
90.4 (113/125) 

[85.1, 95.2]
 Pneumothorax 62.0 (31/50) 

[48.0, 74.0]
72.0 (18/25) 

[54.8, 88.5]
52.0 (13/25) 

[32.1, 70.0]
96.0 (240/250) 

[93.6, 98.4]
95.2 (119/125) 

[91.0, 98.4]
96.8 (121/125) 

[93.4, 99.2]
 Fracture 54.0 (27/50) 

[40.0, 68.0]
72.0 (18/25) 

[54.8, 90.0]
36.0 (9/25) 

[17.9, 55.6]
94.4 (236/250) 

[91.6, 97.2]
93.6 (117/125) 

[88.8, 97.5]
95.2 (119/125) 

[90.8, 98.5]
Overall 55.3 (249/450) 

[51.1, 60.2]
78.0 (177/227) 

[72.6, 83.3]
32.3 (72/223) 

[26.4, 38.2]
97.2 (2187/2250) 

[96.5, 97.9]
97.2 (1103/1135) 

[96.1, 98.1]
97.2 (1084/1115) 

[96.2, 98.2]

Note.—Data are percentages, with numbers of images in parentheses and 95% CIs in brackets. Performance for all classification tasks  
(n = 50 images for each task) is reported separately and aggregated for all tasks as percentages. Results for readers and tasks were pooled by 
concatenating predictions and reference standards for individual readers or tasks before performance metric calculation. OpenAI’s GPT-4V 
was used in this study (5).
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Table 4: Interrater Agreement

Rater Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4 Nonradiologist
Radiologist 1
Radiologist 2 0.94
Radiologist 3 0.94 0.94
Radiologist 4 0.91 0.91 0.92
Nonradiologist 0.9 0.92 0.92 0.9

Note.—Cohen κ values were calculated between each pair of human readers of the binary classification task (pooled across all tasks) to 
quantify the level of interrater agreement.

Figure 3: Performance in classification tasks for GPT-4V (OpenAI) and human readers. (A–F) Confusion matrices show the actual versus predicted classes for ischemic 
stroke (A), brain hemorrhage (B), multiple sclerosis (C), brain tumor (D), lung cancer (E), and pneumonia (F). Results of all readers were pooled. The y-axis represents the 
reference standard label, with 1 indicating the abnormality is present and 0 indicating the abnormality is not present. The x-axis shows whether the abnormality was predicted 
(reference standard 1) or not (reference standard 0) by GPT-4V or the readers. On this basis, the true-positive rate (sensitivity; top left), false-negative rate (top right), false-
positive rate (bottom left), and true-negative rate (specificity; bottom right) were calculated. Squares are darker when the corresponding metric approaches 1 and lighter when 
it approaches 0 (Fig 3 continues).
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from the radiology domain. These are most commonly available 
for chest radiographs, limiting the broad generalizability in ra-
diologic imaging. LLaVa-Med uses a subset of the PMC-15M 
(15 million image-text pairs extracted from PubMed Central) 
data set for fine-tuning with radiographic, CT, and MRI images 
(and gross pathologic and histopathologic images), substantially 
expanding the scope of the model (28). Fundamental limitations 
still exist. The model is trained only on two-dimensional data, not 
accounting for the complexity of findings in three-dimensional 
medical data. Pathologic images are generally overrepresented in 
medical publications, which may exacerbate the problem of false-
positive findings. The image resolution of the model is 224 × 224 
pixels (even lower than that of GPT-4V), whereby small details in 
the images may be missed. Additionally, these models often rely 
on fine-tuning data synthesized by other LLMs. Careful attention 
must be paid to quality assurance. Otherwise, a vicious cycle of 
declining quality could occur.

Our study had several limitations. First, we used a cross- 
section of patients and refrained from collecting detailed clinical  
data. Second, although GPT-4V supports multi-image input, 
we provided only one image per case to ensure uniformity. 
However, we also tested multiple image inputs for intracranial 
hemorrhage detection and did not observe a relevant change in 
performance. Third, we queried the model only once for each 
image (except for the subset for consistency testing and if the 
model refused interpretation). Our approach involved submit-
ting a singular prompt without follow-up questions. Although 

carefully crafted, the prompts used may affect response quality, 
and further research on prompt strategies for medical imag-
ing is needed. Fourth, no clinical data were provided with the 
prompts. Fifth, we calculated only the hypothetical impact on 
a nonradiologist provider, but we did not provide the model 
output during the readings to assess the actual influence of the 
model. Further studies that specifically address this issue are es-
sential. Finally, the human readers performed only the binary 
classification task. This methodologic decision ensured that 
each reader assessed each image only once, preventing recall 
bias. The classification task was chosen over generating free-text 
reports, as it allowed for a standardized assessment and the cal-
culation of more detailed performance metrics.

In conclusion, GPT-4V, in its earliest form, reliably deter-
mined the imaging modality and anatomic region from single 
radiologic images. However, despite providing convincing-
sounding output, it cannot interpret medical images, as it failed 
to detect, classify, or rule out abnormalities safely. Neverthe-
less, large vision-language models show potential as foundation 
models in radiology. Adapting to field-specific requirements, 
such as stack inputs, and carefully fine-tuning the model for 
medical image analysis (eg, by leveraging representative data 
of a large health care system) should improve performance. 
Thoroughly testing diagnostic capabilities and challenging U.S. 
Food and Drug Administration–approved algorithms is man-
dated before considering multimodal large language models in 
medical practice.

Figure 3 (continued): Performance in classification tasks for GPT-4V (OpenAI) and human readers. (G–J) Confusion matrices show the actual versus predicted classes 
for pulmonary embolism (G), pneumothorax (H), fracture (I), and overall (aggregated for all tasks) (J). Results of all readers were pooled. The y-axis represents the reference 
standard label, with 1 indicating the abnormality is present and 0 indicating the abnormality is not present. The x-axis shows whether the abnormality was predicted (reference 
standard 1) or not (reference standard 0) by GPT-4V or the readers. On this basis, the true-positive rate (sensitivity; top left), false-negative rate (top right), false-positive rate (bot-
tom left), and true-negative rate (specificity; bottom right) were calculated. Squares are darker when the corresponding metric approaches 1 and lighter when it approaches 0.
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