To fit is to overfit

How the negligence of prediction performance blurs model quality

Sven Hilbert & Elisabeth Kraus



Topics

Map of the topics covered in this talk
e Goals of an empirical science
* Comparison of two cultures of modeling (in empirical science)

* Short overview predictive modeling
* Prediction and explanation

* Over- and underfitting

* Resampling

e Short summary
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Goals of empirical science

1. Description

* Descriptive statistics: Summary statistics and plots,
to make the data accessible

2. Explanation

* Statistical inference: Estimation of parameters to
model the patterns within the data sample,
assumptions about probability distributions

3. Prediction

* Predictive modeling: prediction of novel data, after
training a model through resampling

»The overarching goal is generalization
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Explanation and prediction

Leo Breiman (2001): ,Two cultures of
statistical modeling’

1. Strong theoretical assumption of a given
stochastic model, a data-generating process
»e.g., linear or exponential relationship
 (Classical) Inference statistics

* Focus on explanation and model assumptions
e p-values for inference

2. Treatment of data-generating process as
unknown, use of flexible algorithmic
models
* Predictive modeling, machine learning

* Focus prediction performance
* Estimation of generalization error
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Assumptions of classical models

e General Linear Model
e Normal distribution of the residuals

e~N(0; 0%)
* Linear relationships
y=px+¢
* Generalized Linear Model

y =g(Bx +¢)
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Short overview predictive modeling

Model types
* Tree-based methods (CART)

e Random forest, boosting

* Kernel-based methods
e Support vector machines

* Deep Learning
e Neural network models

Characteristics

* Optimized for the prediction of novel data

e Often without directly interpretable parameters
* Highly functional with large amounts of variables
e Use of resampling
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ison of classification models

Compar

ion models for (dichotomous)

Grafik: Efron, B., & Hastie, T. (2016). Computer age statistical inference(Vol. 5). Cambridge University Press., S. 125

ic regress

Ist

we use logi

* Classically,
categorization

* Interpretable parameters, but little flexibility when fitting to data

* Tree-based models are more flexible

* However, interpretability often difficult and limited

Logistic Function
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Exemplary Study Personality Types

* AVEM: Pattern of Work-related Coping Behavior (Schaarschmidt & Fischer, 1996),
modeled with a sample of N =478 teachers
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» Prediction using the Big Five personality traits, Motivation, and Competence
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Conscientiousness
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Prediction and explanation for AVEM patterns

Two models: Random forest and multinomial regression

Model with highest prediction performance

Neuroticism

—
<
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Pattern B (R)

Conscientiousness

Model with most a priori assumptions

Neuroticism
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Pattern A (R)
Pattern B (R)
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Example decision tree

Classification of four AVEM coping patterns
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CART overfitting

Many tree-based machine learning algorithms
integrate measures to actively avoid overfitting /'

« Random forest S
* Bootstrapping e
* Bootstrap the cases for each tree &

* Split-variable randomization . |
» Randomly select only m out p variables for each split 4™

e

* Boosting R N
* Early stopping '

e Stop improving the model fit to the training data when
the test set performance stops improving
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Over- and underfit

* Overfitting
* Model adapts too much to the sample data

* Underfitting
* Model adapts too little to the sample data

Overfitting
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Consequences for estimates of model quality

#13



R

Bias, variance, and the amount of data
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Resampling

e Use of training and test sets
* Alearner is trained through
resampling to become a model

 Performance measure for the
generalization error

* Comparison of different model types

> Model with most accurate
prediction is used

Performance

Traln Data Test Data

Performance
Measure

Learner """ > Mod&_> Prediction

Representatlon

Repeat =
Resampling
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Generalization error

Estimation of the
generalization error

* Categorization

#Misclassifications
MMCE =

#Total Classifications

* Regression

n 2
i=1 (xi.Predicted — xi.True)

MSE =
n

o]

Representation

Performance

Performance
Measure

Prediction

Repeat =
Resampling
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Summary: Assessing model quality

|deas for increasing model quality

* Model assessment through prediction performance 3 Qf@’l ’
* Avoid overfitting and over-interpretation of p-values " S %

* Combine prediction with description and explanation
» Use the head

e Continuous evaluation of models
* Repeated estimation of the generalization error

* Another important aspect: Open Science
»Simulation code available at: https://osf.io/whgmx/
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https://osf.io/whqmx/
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Open Science

e Open Science is a crucial aspect of trustworthy
empirical research

»Making the data publicly available is an important
contribution to model evaluation

» Public storage makes it possible to build new models
from existing data

* A broad data base is the one of the most o
important foundations for the estimation of valid Open Science
models www.osf.io
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Example three-fold cross validation

* Recycling of the sample data
» Division in multiple (sub-)sub-samples for training and testing

Test Errors

1. Split Test
I | Performance |

[Model}—' [Predjction]

2. Split ENENE  Test EMBENN

Aggregated

|
> | Performance :
Performance

3. Split | Test

Sven Hilbert #22

\ | Performance |




Variable (Permutation) importance

Neuroticism -
Conscientiousness -
Competence -

Openness -

Feature

Motivation -
Agreeableness -

Extraversion -
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mmce
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Overfit and test sample performance

o
S | —— training error
test error
(e0)
Q —
o
(o]
Q —
o - -
0 .. Underfitting, ____Overfitting, /.
= Too simple model Too complex model
(@
o
O—o
QA
o
o \
\-
8 - C - - °C——0—0—o0
© | | | | |
2 4 6 8 10

degree of polynomial
#24



