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a b s t r a c t 

Visual imagery relies on a widespread network of brain regions, partly engaged during the perception of external 

stimuli. Beyond the recruitment of category-selective areas (FFA, PPA), perception of familiar faces and places has 

been reported to engage brain areas associated with semantic information, comprising the precuneus, temporo- 

parietal junction (TPJ), medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). Here we used 

multivariate pattern analyzes (MVPA) to examine to which degree areas of the visual imagery network, category- 

selective and semantic areas contain information regarding the category and familiarity of imagined stimuli. 

Participants were instructed via auditory cues to imagine personally familiar and unfamiliar stimuli (i.e. faces 

and places). Using region-of-interest (ROI)-based MVPA, we were able to distinguish between imagined faces 

and places within nodes of the visual imagery network (V1, SPL, aIPS), within category-selective inferotemporal 

regions (FFA, PPA) and across all brain regions of the extended semantic network (i.e. precuneus, mPFC, IFG 

and TPJ). Moreover, we were able to decode familiarity of imagined stimuli in the SPL and aIPS, and in some 

regions of the extended semantic network (in particular, right precuneus, right TPJ), but not in V1. Our results 

suggest that posterior visual areas - including V1 - host categorical representations about imagined stimuli, and 

that stimulus familiarity might be an additional aspect that is shared between perception and visual imagery. 
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. Introduction 

If asked to locate a beloved person, for example a family member

ithin a crowd, most of us would probably identify that person’s face

mong many others in a considerably short amount of time. Due to

heir personal valence, personally familiar stimuli happen to be easier to

ecognize compared to unfamiliar stimuli ( Visconti Di Oleggio Castello

t al., 2017 ). This is also true when the quality of the visual input (i.e.

icture) is degraded ( Burton et al., 1999 ), or when attentional resources

re reduced ( Gobbini et al., 2013 ). This facilitation in recognizing famil-

ar stimuli seems to be possible through the larger amount of associated

eatures, i.e. subjective information and personal episodic knowledge,

hich are lacking in novel and unfamiliar stimuli ( Gobbini et al., 2004 ;

obbini and Haxby, 2007 ; Cloutier et al., 2011 ). 

To identify the network of brain regions involved in the perception

f personally familiar stimuli, previous studies mainly focused on two

timulus categories, i.e. faces and places. The network involved in pro-

essing personally familiar faces has been suggested to include a “core ”

etwork, comprising inferotemporal regions (e.g. the fusiform face area,

FA) responsible for extracting information about the visual appearance

f faces, and an “extended ” network involved in the retrieval of relevant

emantic information, such as personal traits, intentions and attitudes of
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hat familiar person ( Haxby et al., 2000 ). This “extended ” semantic net-

ork for face perception has been proposed to include “Theory of Mind ”

reas, such as the medial prefrontal cortex (mPFC) and the temporo-

arietal junction (TPJ), responsible for retrieving person knowledge

 Cloutier et al., 2011 ), and anterior temporal cortices and precuneus,

esponsible for the retrieval of long-term episodic memories ( Shah et al.,

001 ; Gobbini and Haxby, 2007 ; Haxby and Gobbini, 2012 ). Using

ultivariate pattern analyzes (MVPA), Visconti Di Oleggio Castello

t al. (2017) showed that information about both the specific identity

nd the familiarity of perceived faces could be decoded within both the

core ” (i.e. FFA, OFA) and the “extended ” network for face perception

i.e. mPFC, TPJ, precuneus, IFG). Interestingly, familiarity of perceived

aces was also encoded in the primary visual cortex (V1). 

Regarding the perception of personally familiar places,

ugiura et al. (2005) identified a key role of two different brain

egions: the precuneus, supporting episodic memory retrieval, and the

osterior cingulate cortex (PCC), involved in the spatial representa-

ion and recognition of personally familiar places. In a more recent

tudy, Silson et al. (2019) further extended these results, reporting the

nvolvement of a similar portion of the medial parietal cortex during

he recall of personally familiar places from memory. Moreover, a
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o  

s  

t  

p  
ingle case study exploring recognition mechanisms in a patient suf-

ering from topographic agnosia highlighted a key role of the anterior

arahippocampal cortex in mediating the recognition of personally

amiliar places ( Van Assche et al., 2016 ). 

To which degree are areas - sensitive to the familiarity of perceived

timuli - also involved in generating a mental image of a person or a

lace in the absence of a visual stimulus? Visual mental imagery has

een interpreted as the reactivation of sensory representations stored in

ur memory by means of top-down mechanisms ( Dentico et al., 2014 ;

ijkstra et al., 2017 a; Mechelli et al., 2004 ; Pearson, 2019 ). In line

ith this idea, a growing number of studies showed that visual imagery

ecruits a similar set of brain regions as those involved in perception

for a meta-analyzes, see Winlove et al., 2018 ). For example, several

tudies showed that visual mental imagery recruits retinotopically orga-

ized early visual cortices ( Kosslyn and Thompson, 2003 ; Kosslyn, 2005 ;

inlove et al., 2018 ), but also parietal areas known to be recruited

uring visuospatial attention ( Andersson et al., 2019 ; Formisano et al.,

002 ; Sack and Schuhmann, 2012 ; Slotnick et al., 2005 ). Moreover, vi-

ual mental imagery of specific stimulus categories (i.e. faces, places

nd objects) has been shown to recruit category selective regions within

he inferior temporal cortex (i.e. FFA, PPA, lateral occipital complex -

OC; Ishai et al., 2000 ; O’Craven and Kanwisher, 2000 ). Using multivari-

te pattern analyzes (MVPA), it has been demonstrated that it is possi-

le to decode the identity of imagined stimuli in early visual cortices

 Albers et al., 2013 ), parietal ( Ragni et al., 2020 ) and inferior-temporal

egions ( Cichy et al., 2012 ; Reddy et al., 2011 ). Finally, several studies

emonstrated that it is possible to predict imagined stimuli from activa-

ion patterns obtained during perception and vice versa (cross-decoding,

tokes et al., 2009 ; Albers et al., 2013 ; Ragni et al., 2020 ), indicating

hared representations between perception and visual mental imagery. 

Despite these similarities between imagery and perception, no study

o far has explored to which degree it is possible to distinguish between

isual mental imagery of personally familiar versus personally unfamil-

ar stimuli. To address this question, we instructed a group of partic-

pants to imagine different personally familiar and unfamiliar stimuli

i.e. faces and places) while measuring their brain activity using fMRI.

pecifically, we asked in which brain regions it is possible to distinguish

etween (1) imagined stimulus categories (i.e., faces and places), and be-

ween (2) personally familiar and unfamiliar imagined faces and places.

sing region-of-interest (ROI)-based MVPA, we focused on three sets

f brain regions: (i) the visual imagery network, comprising key areas

nvolved in the generation and maintenance of mental images (i.e. V1,

PL and aIPS); (ii) category–selective regions within inferior temporal

ortex (i.e. FFA and PPA) - which are recruited during visual imagery of

pecific stimulus categories (i.e. faces and places); (iii) the extended se-

antic network for face perception, consisting in brain regions involved

n the extraction of personal information from familiar stimuli (i.e. pre-

uneus, mPFC, IFG and TPJ; Haxby et al., 2000 ; Visconti Di Oleggio

astello et al., 2017 ). 

To anticipate our results, we were able to decode category informa-

ion of imagined stimuli within occipital (V1) and parietal (SPL, aIPS)

odes of the visual imagery network. Similarly, we were able to dis-

inguish between imagined stimulus categories in category-selective re-

ions (FFA, PPA), and across the extended semantic network for face

erception (i.e. precuneus, mPFC, IFG and TPJ). Familiarity of imagined

timuli, on the other hand, could be decoded (over and above vividness)

n some regions of the visual imagery network (i.e. right SPL, right aIPS)

nd the extended semantic network for face perception (in particular,

ight precuneus and right TPJ), but not in V1 and category-selective ar-

as. Our results suggest that posterior visual areas, including V1, contain

ategory-specific information about imagined faces and places. More-

ver, our results demonstrate that familiarity of imagined stimuli is en-

oded in higher-level semantic regions, extending previous findings on

he perception of familiar and unfamiliar stimuli to visual mental im-

gery. 
2 
. Materials & Methods 

.1. Participants 

Twenty-five healthy volunteers participated in the study. All partic-

pants had normal or corrected-to-normal vision and had no history of

eurological or psychiatric disease. Before taking part in the study, all

articipants gave their written informed consent. Due to excessive head

ovements during the scanning session (average relative mean displace-

ent across all experimental runs > 1mm), two participants had to be

xcluded from the study, leading to a final sample of twenty-three par-

icipants (13 males, 10 females, mean age: 26.6 ± 3.8). The study was

pproved by the Ethics Committee for research involving human partic-

pants at the University of Trento, Italy. 

.2. Setup 

Visual stimuli were displayed on a liquid crystal monitor (Nordic

euroLab, Norway; frame rate: 60 Hz; screen resolution: 1920 × 1200

ixels). Participants lay horizontally in the scanner and viewed the

creen (31.2°x17.5° of visual angle) binocularly via a rectangular mirror,

ositioned on the head coil. The auditory cue was delivered by means of

R-compatible earplugs (Siemens pneumatic earplugs). Button presses

ere collected via MR-compatible response buttons (Nordic Neurolab

ox, Nordic Neurolab, Norway). Stimulus presentation, response collec-

ion and synchronization with the scanner were controlled using MAT-

AB 2017 (MathWorks, Natick, MA, U.S.A.) and the Psychtoolbox-3 for

indows ( Brainard, 1997 ). Experiment presentation code is available

n the Open Science Framework (https://osf.io/ynp5z/). 

.3. Stimuli 

Stimuli consisted in pictures of different faces and places (4 exem-

lars each). We selected these two stimulus categories as their percep-

ion is known to preferentially recruit portions of high-level visual cortex

i.e. FFA and PPA; Epstein et al., 1999 ; Kanwisher and Yovel, 2006 ).

ithin each stimulus category, half of the stimuli (i.e. 2 exemplars)

onsisted of personally familiar stimuli, whereas the remaining half con-

isted of unfamiliar stimuli. Personally familiar faces were close-up pho-

ographs of two male or two female individuals with a close relationship

ith each participant (e.g. relatives, friends, partners, etc.). Personally

amiliar places, instead, were images of indoor spaces were participants

elt comfortable (e.g. their own bedroom, living room, etc.). Participants

rovided images several days before the experimental session. A list of

ll personally familiar stimuli selected by participants is provided in the

upplementary Materials (Table S1) . 

Each familiar stimulus was matched with an unfamiliar picture

elected from two standard databases (Faces: Face Place Dataset,

arr, 2008 ; Places: MIT Places-205 Dataset, Zhou et al., 2014 ). Faces

ere also matched for age, sex and ethnicity, whereas places were

atched for the type of room. Pictures were scaled to 155 × 155 pixels,

orresponding approximately to 4° visual angle. Each stimulus was then

ssociated with a name: unfamiliar stimuli were tagged with standard

abels (i.e. “face one ”, “face two ”, “room one ”, “room two ”), whereas

amiliar stimuli with names selected by each participant. These labels

ere used as auditory cues during the experimental task (see 2.4. Exper-

mental session and task for more details). 

.4. Experimental session and task 

Each participant completed a single experimental session, consisting

f 9 functional runs (~ 5 min each; see Fig. 1 a). Each functional run

tarted and ended with a rest period (12 s at the beginning and 20 s at

he end), and consisted of 16 trials, for a total of 144 trials per partici-

ant (36 trials for each condition). The conditions were embedded in a
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Fig. 1. Layout of an experimental session, a 

single run and the trial structure. (a) Experi- 

mental session: participants performed a sin- 

gle experimental session, consisting in 9 ex- 

perimental runs and a structural scan halfway 

through the experiment. (b) Each run (top 

panel) consisted of 16 trials, using an event- 

related design. Each trial (bottom panel) was 

preceded by an ITI (10 s) consisting of the pre- 

sentation of a central fixation cross and a super- 

imposed placeholder (10 s). Next, an auditory 

cue (1 s) instructed participants which stimu- 

lus to imagine (e.g. a face, identity ‘1’) in the 

center of the placeholder, for 4 s. At the end 

of each trial, participants rated the vividness of 

the mental image they were able to generate on 

a 4-steps Likert scale, where 1 corresponded to 

low vividness and 4 to high vividness. 
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 × 2 factorial design, with the factors: stimulus category (faces, places)

nd familiarity (personally familiar, unfamiliar). To examine patterns

f brain activation during visual imagery of personally familiar and un-

amiliar stimuli, we adopted an event-related design. The stimulus to

e imagined was randomized across trials. Before entering the scanner,

articipants were requested to memorize the familiar and unfamiliar

xperimental stimuli and practiced the task for one experimental run. 

Each trial of the visual imagery task started with a 10 s inter-trial

nterval (ITI in Fig. 1 b), consisting in the presentation of a central fix-

tion cross and a superimposed placeholder ( Fig. 1 b). The placeholder

as represented by a square comprising 4° visual angle and served as a

eference for the position and size of the mental image to be generated

uring the subsequent imagery period ( Fig. 1 b). Then, a verbal instruc-

ion (Auditory cue in Fig. 1 b, duration: 1 s) instructed participants which

timulus to imagine in the current trial. After the cue, participants were

nstructed to imagine the corresponding stimulus as vividly as possible

n the center of the placeholder (Imagery Period in Fig. 1 b , duration: 4

). Next, a question appeared on the screen (Vividness rating in Fig. 1 ,

uration: 2 s), prompting participants to rate the vividness of the men-

al image they had previously generated on a 4-steps Likert scale (an-

wer scale: 1. Low vividness – 4. High vividness ). Participants were asked

o indicate their response by button press. Across the entire trial, the

nly visual information present on the screen was the central fixation

ross and the superimposed placeholder, and the question in the rating

hase. At the end of the experimental session, participants filled out the

ividness of Visual Imagery Questionnaire (VVIQ; Marks, 1973). This

uestionnaire is aimed to assess individual differences in visual imagery

bilities by asking the reader to imagine different scenarios (e.g. “Visual-

ze a rising sun. Consider carefully the picture that comes before your mind’s

ye ”), both with eyes open and eyes closed, and rate their vividness on a

-steps Likert scale (answer alternatives: 1. Perfectly clear and as vivid as

ormal vision ; 2. Clear and reasonably vivid ; 3. Moderately clear and vivid ;

. Vague and dim ; 5. No image at all) . 
3 
.5. Data acquisition 

Magnetic resonance images were collected using a 3T Siemens MAG-

ETOM Prisma scanner equipped with a 64-channel head-coil. Func-

ional data were acquired using a multiband EPI sequence (multi-band

cceleration factor 3, TE/TR = 28/1000 ms, flip angle = 59°, matrix

ize = 64 × 64, 42 interleaved slices, in-slice resolution 3 mm x 3 mm).

e acquired 294 volumes for each functional run, with axial slices

lightly tilted to be approximately parallel to the calcarine sulcus in

rder to optimize brain coverage. 

For each participant, we acquired a T1-weighted anatomical scan

MPRAGE; TR: 2140 ms; voxel resolution: 1 mm x 1mm x 1 mm; TE: 2.9

s; FA: 12°; FOV: 288 mm 

3 ; 208 slices; inversion time: 950 ms). 

.6. Behavioral data analyzes 

For each participant, we computed average vividness rating for imag-

ned faces and places, separately for familiar and unfamiliar stimuli. We

erformed a repeated measures ANOVA, with familiarity (2 levels) and

timulus category (2 levels) as factors. Post-hoc t -tests were adopted to

ompare specific conditions of interest. 

.7. fMRI data analyzes 

.7.1. Preprocessing 

Data were preprocessed and analyzed using FSL 5.0.11 (FMRIB’s

oftware Library, https://fsl.fmrib.ox.ac.uk/fsl ) in combination with

ustom software written in MATLAB (MathWorks, Natick, MA, U.S.A.).

reprocessing included rigid-body motion correction to the mean image,

ollowed by slice timing correction and high-pass temporal filtering ( >

.01 Hz). To prevent multivariate pattern (MVP) analyses from being

ffected by the removal of fine-scale information in activity patterns

https://fsl.fmrib.ox.ac.uk/fsl
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s  
 Kriegeskorte et al., 2006 ), we did not apply spatial smoothing to the

unctional data. 

Each functional run was registered to the subject’s anatomical high-

esolution image with rigid body transformation (using the Boundary-

ased Registration algorithm implemented in FSL 5.1; Greve and Fis-

hl, 2009 ) and to the MNI152 2mm standard brain using linear trans-

ormation (FLIRT, 12 degrees of freedom; Jenkinson and Smith, 2001 ;

enkinson et al., 2002 ). Visual inspection of the results of this prepro-

essing pipeline was performed for each participant. Due to excessive

ead motion, three functional runs of two different participants were ex-

luded from the analyzes (average relative mean displacement > 1mm).

.7.2. Univariate analyzes 

To examine whether there are differences in univariate activation

etween familiar and unfamiliar stimuli, we performed a general lin-

ar model (GLM) analyzes. The first and second level analyses (fixed

ffect) were performed in subject’s individual space using FSL (fixed-

ffect model). To examine the amplitude of the blood-oxygen level-

ependent (BOLD) response during visual imagery of familiar and un-

amiliar stimuli, we created regressors for each factorial combination of

timulus category and familiarity, resulting in a total of 4 regressors (2

ategories x 2 familiarity levels) for each experimental run. Regressors

ere time-locked to the start of the imagery delay (duration: 4 s). More-

ver, regressors for the presentation of the auditory cue (time-locked to

he onset of the auditory instruction; duration: 1 s) and response-phase

time-locked to the appearance of the question on the screen; duration:

 s) were added to the model as nuisance regressors. Each regressor was

onvolved with a canonical hemodynamic response function (HRF). In

ddition, motion parameters (3 x rotation, 3 x translation) were added

o the model as regressors of no interest. 

Results from the second-level analyzes were then entered in a third-

evel analyzes across participants, performed using FSL’s FLAME (mixed-

ffect model). For the resulting maps, we adopted a voxel-wise thresh-

ld of p < 0.001 (z set at 3.1) and a (corrected) cluster-wise threshold

 p = 0.001) following Gaussian Random Field (GRF) theory (Worsley

t al., 1996), which is embedded in the FSL’s cluster routine. 

.7.3. ROI definition for multivariate pattern (MVP) analyzes 

In this study, we aimed to investigate how neural representations

f personally familiar stimuli are encoded within three different brain

ystems: the visual imagery network, category-selective areas of inferior

emporal cortex and the extended semantic network for face perception.

e extracted ROIs within these three networks by defining a sphere

entered around a priori defined coordinates (radius 9 mm). 

The visual imagery network is central for the internal generation and

aintenance of mental images ( Dijkstra et al., 2019 a; Mechelli et al.,

004 ). This network encompasses the primary visual cortex (V1), and

arietal areas (i.e. SPL and aIPS). 

In addition, we identified ROIs in category-selective areas FFA and

PA in the inferior temporal cortex, which are known to be recruited

hen participants perceive or imagine specific stimulus categories (i.e.

aces and places). 

For ROIs of the extended semantic system for face perception, we in-

luded brain regions considered to be involved in the processing of per-

onally familiar stimuli ( Gobbini and Haxby, 2007 ; Haxby et al., 2000 ),

uch as the precuneus, the temporo-parietal junction (TPJ), the inferior

rontal gyrus (IFG) and the medial prefrontal cortex (mPFC). 

Specifically, we defined spherical ROIs centered around the coordi-

ates of a previous study on the perception of personally familiar face

timuli ( Visconti Di Oleggio Castello et al., 2017 ) for V1, FFA, precuneus,

PJ, mPFC and IFG. For SPL and aIPS spherical ROIs were centered on

he peak probabilistic voxel of each region as defined by the Juelich

istological Atlas (SPL: area 7A; aIPS: area hIP3; Eickhoff et al., 2007 ).

ince the Juelich Histological Atlas does not contain standard ROIs of

ategory selective regions of inferior temporal cortex, the spherical ROIs

or PPA were centered around peak values of a standard ROI selected
4 
sing an automated meta-analytic database ( Neurosynth ; Yarkoni et al.,

011 ). Considering that a more balanced comparison of effects might

e achieved if ROIs are defined using the same criteria, we ensured FFA

oordinates provided by Visconti Di Oleggio Castello et al.(2017) fell

ithin the range of those provided by the same meta-analytic database

sed to define PPA (i.e. Neurosynth ). All ROIs were visually inspected

sing FSLView to ensure there was no overlap between them (see Table

2 for the coordinates of the peaks of all our ROIs). 

.7.4. MVP analyzes 

ROI-based MVP analyses were implemented by means of a 2-class

egularized linear discriminant analyzes (LDA) classifier using the CoS-

oMVPA Toolbox ( Oosterhof et al., 2016 ). Estimates for the classifica-

ion analyzes were generated using a general linear model (GLM) ana-

yzes, performed in participant’s individual anatomical space using FSL

fixed-effect model). We created regressors for each single trial within

he 9 experimental runs. This led to a total of 144 estimates per partici-

ant (36 for each experimental condition). Regressors were time-locked

o the start of the imagery delay (duration: 4 s). Moreover, regressors

or the presentation of the auditory cue (time-locked to the onset of

he auditory instruction; duration: 1 s) and the response-phase (time-

ocked to the appearance of the question on the screen; duration: 2 s)

ere added to the model as nuisance regressors. Each regressor was

onvolved with a canonical hemodynamic response function (HRF). Re-

ressors were orthogonal to each other (maximum correlation between

egressors within runs and participants: R 

2 = 0.028; average correlation:

 

2 = 0.00016). In addition, motion parameters (3 rotational and 3 trans-

ational parameters) resulting from 3D motion correction were added to

he model as regressors of no interest, for a total of 24 regressors for each

xperimental run. Since t -values are computed dividing beta estimates

y the estimate of the standard error, decoding on the basis of t-values

as been shown to suppress the contribution of noisy voxels and there-

ore has been considered to be better suited for decoding ( Misaki et al.,

010 ). We therefore performed MVPA on t- values instead of beta

alues. 

We performed two different MVP classification analyses: (1) with the

ategory classification analyzes, we aimed to identify brain regions rep-

esenting the category (i.e. face or place) of imagined stimuli; (2) with

he familiarity classification analyzes, we investigated which brain re-

ions encode information relative to the familiarity of imagined stimuli,

eparately for faces and places. 

Cross-validation . We adopted a leave-one-run-out cross-validation

cheme. T-values were divided into training and test sets depending on

he type of decoding. For category classification (i.e. faces vs places), we

ross-validated across familiarity and runs (see Fig. 2 a ): the classifier

as trained on t-values obtained during visual imagery of two familiar

aces and two familiar places in n-1 runs and tested on t-values corre-

ponding to imagery of the left-out unfamiliar stimuli in the remaining

un, and vice versa (18 cross-validation splits). This allowed us to con-

rol for familiarity information. For familiarity classification , we cross-

alidated across pairs of identities and runs (see Fig. 2 b ). Separately for

aces and places, we trained the classifier on t-values corresponding to

ne familiar and one unfamiliar stimulus in n-1 runs and tested on the t-

alues corresponding to two left-out identities (one personally familiar,

ne unfamiliar) in the remaining run, and vice versa (18 cross-validation

plits). This allowed us to disregard identity information from familiar-

ty classification. 

.7.5. ROI-based MVPA 

We performed classification analyzes across three separate networks:

he visual imagery network (i.e. V1, SPL, aIPS), category-selective areas

i.e. FFA, PPA) and the extended semantic network for face processing

i.e. mPFC, precuneus, TPJ, IFG). For more information see 2.7.2. ROI

efinition . To assess significance of decoding accuracy, we performed

ermutation-based testing ( Stelzer et al., 2013 ). For each ROI and clas-

ification analyzes, we created 100 random accuracy values for each
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Fig. 2. Cross-validation schemes. Visual rep- 

resentation of the different cross-validation 

schemes adopted for (a) category classification 

(across familiarity and runs) and (b) familiar- 

ity classification (across pairs of identities and 

runs, separately for faces and places). In panel 

(b) the labels ID1, ID2, ID3 and ID4 represent 

the 4 different identities of face or place stimuli 

selected individually for each participant. 
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articipant by permuting labels and performing classification. We then

andomly selected one permuted accuracy value for each participant,

omputed the group average and repeated this operation 10000 times

o create a null distribution of averaged accuracy values. Statistical sig-

ificance of the decoding accuracy was computed with respect to this

ull distribution of group averaged accuracy values. Results were cor-

ected for multiple comparisons (number of ROIs x number of tests)

sing a false discovery rate (FDR; q -value < 0.05; Benjamini and Yeku-

ieli, 2001 ). 

To replicate our ROI analyzes and to identify additional brain

egions representing category and familiarity of imagined faces and

laces, we also performed a whole brain searchlight-based MVPA

 Kriegeskorte et al., 2006 ; Oosterhof et al., 2016 ). For details, see the

earchlight-based MVPA section in the Supplementary Materials ). 

Finally, we conducted three additional control analyses to test

hether similarity between the auditory cues and/or vividness might

artially explain the MVPA results. 

First, to exclude a potential influence of similarity between auditory

ues for the different categories on the results of the decoding of fa-

iliarity, we performed a Representational Similarity Analyzes (RSA),

omparing the similarity between neural estimates of familiar and un-

amiliar stimuli (for more detailed information see the section The role

f the auditory cue: Representational similarity analyzes (RSA) in the Sup-

lementary Materials ). 
t

5 
Second, to explore the potential impact of vividness on decoding

nalyses, we tried to directly decode vividness ratings provided by par-

icipants from patterns of activation using (a) a Support Vector Clas-

ification and (b) Support Vector Regression analyzes (see The role of

ividness: Support Vector Classification (SVC) and The role of vividness:

upport Vector Regression (SVR) in the Supplementary Materials, for more

nformation). 

Third, we tested the significance of the differences between the con-

rol analyses (i.e., decoding of vividness) and the original analyses (i.e.,

ecoding of familiarity). To this aim, we directly contrasted the clas-

ification accuracies for the SVC control analyzes (decoding vividness

nformation) with the classification accuracies of the two original de-

oding analyses (i.e., decoding familiarity information, separately for

aces and places). For more detailed information please refer to section

omparison between familiarity analyzes and SVC analyzes for vividness in

he Supplementary Materials . 

.7.6. Data and code availability 

Code and summary data for the ROI–based multivariate analyses are

vailable on the Open Science Framework ( https://osf.io/ynp5z/ ). The

onditions of our ethics approval do not permit public archiving or peer-

o-peer sharing of individual raw data. The raw functional and structural

ata of our study may be made available upon request after a confirma-

ion from the ethical committee of our institution. 

https://osf.io/ynp5z/
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Fig. 3. Boxplot representing the distribution of 

vividness ratings ( N = 23) as function of imag- 

ined stimulus category and familiarity. Data 

(black dots) represent average vividness ratings 

of individual participants, separately for each 

stimulus category. Each box encloses data com- 

prised between the first (top edge) and third 

(bottom edge) quartile. The horizontal line 

within each box denotes the median. Whiskers 

indicate maximum (top) and minimum (bot- 

tom) values. Significance levels: one black as- 

terisk, p < 0.05; two black asterisks, p < 0.01; 

three black asterisks, p < 0.001. Color scheme 

same as category decoding in Fig. 1 . 
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with a dotted circle. 
. Results 

.1. Behavioral results 

Vividness for each stimulus category (i.e. faces and places) was com-

uted by averaging vividness ratings, separately for familiar and unfa-

iliar stimuli. Fig. 3 shows the distribution of vividness ratings as a func-

ion of stimulus category (i.e. face or place) and familiarity (i.e. familiar

nd unfamiliar stimuli). As expected, participants provided higher vivid-

ess ratings for visual mental imagery of familiar in comparison to un-

amiliar stimuli [main effect of familiarity: F(1, 22) = 29.446, p < 0.001;

verage vividness familiar stimuli: 3.34 ± 4.7; average vividness un-

amiliar stimuli: 2.87 ± 0.5]. We observed no difference in vividness

atings when comparing faces and places overall [main effect of stimu-

us category: F(1, 22) = 3.22, p = 0.087; average vividness faces: 3.17 ±
.57; average vividness places: 3.05 ± 0.49]. However, visual imagery

f familiar faces induced more vivid mental images compared to visual

magery of familiar places [interaction between stimulus category and

amiliarity: F(1, 22) = 6.503, p = 0.018; t(22) = 3.368, p = 0.003; av-

rage vividness familiar faces: 3.49 ± 0.41; average vividness familiar

laces: 3.19 ± 0.48)]. By contrast, we obtained no difference in terms of

ividness ratings between unfamiliar faces and places [t(22) = -0.542,

 = 0.593; average vividness unfamiliar faces: 2.84 ± 0.53; average

ividness unfamiliar places: 2.9 ± 0.48]. 

.2. Univariate analyzes 

We focused the univariate analyzes on the familiarity effect, testing

hether there was an increased activation associated with familiar com-

ared to unfamiliar imagined stimuli (GLM contrast familiar > unfamil-

ar stimuli). Results from the mixed-effects analyzes were projected on

 segmented and inflated surface mesh of the two hemispheres in Brain-

oyager QX 2.8.0 (Brain Innovation). As can be seen in Fig. 4 , familiar

timuli elicited greater activation compared to unfamiliar stimuli within

he bilateral mPFC, bilateral precuneus, left anterior temporal lobe and

eft angular gyrus. By contrast, we found no region where imagining un-

amiliar stimuli was associated with an increase of activation compared

o familiar stimuli. 
6 
.3. Multivariate pattern analyses 

We performed a ROI-based multivariate pattern analyzes to examine

he representation of personally familiar stimuli (i.e. faces and places)

ithin the visual imagery network, category-selective inferotemporal

reas and the extended semantic network for face perception. 

Regarding our first question, we were able to decode the category

faces, places) of imagined stimuli from patterns of activation in V1 and

arietal (i.e. SPL, aIPS) regions of the visual imagery network ( Fig. 5 a ),

ithin category-selective areas (i.e. FFA and PPA; Fig. 5 b ) and the ex-

ended semantic network of face perception (i.e. precuneus, TPJ, mPFC,

FG; Fig. 5 c ). The corresponding statistics are shown in Table 1 . 

Regarding our second question, we were able to decode the familiar-

ty of imagined faces and houses within parietal (i.e. SPL, aIPS) nodes

f the visual imagery network, but not in V1 ( Fig. 5 a ). Within category-

elective areas, we were able to decode the familiarity of faces, but not

laces, in left FFA ( Fig. 5 b ). By contrast, we were able to decode the fa-

iliarity of both places and faces in PPA. Finally, we were able to decode

he familiarity of imagined faces and places within the extended seman-

ic network (i.e. precuneus, TPJ, mPFC, IFG; Fig. 5 c ). The corresponding

tatistics are shown in Table 1 . Moreover, the results of our ROI analyzes

re consistent with the results of the searchlight-based MVP analyses

see Supplementary Materials, Fig. S1-3 ). 

To assess whether the familiarity decoding might be explained by

ifferences in similarity of the adopted auditory cues and/or by the dif-

erent levels of vividness of the imagined stimuli, we performed three

dditional control analyses. In the following sections, we will briefly de-

cribe these analyses (summarized in Fig. 6 ), whereas a more detailed

escription is provided in the Supplementary Materials. 

First, we explored whether there was a possible influence of the sim-

larity of the adopted auditory cues on familiarity decoding adopting

SA (see Supplementary Materials, page 5-9 ). The results of this analyzes

howed a possible effect of similarity between the auditory cues within

everal (i.e. left precuneus, left TPJ, left mPFC and right IFG), but not

ll of the examined ROIs (see Table S1), which might partially explain

he decoding of familiarity in these regions. The result of the RSA ana-

yzes is summarized in Fig. 6: regions showing a significant effect in this

nalyzes (and thus a potential role of the auditory cue) are highlighted
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Fig. 4. Results of the univariate mixed-effects 

GLM contrast familiar > unfamiliar stimuli 

( N = 23 participants). The z-map of group 

level activation was thresholded at p = 0.001 

and cluster-correction was applied using GRF 

theory ( p = 0.001). The resulting z-map was pro- 

jected on a segmented and inflated surface 

mesh of the two hemispheres. L: Left hemi- 

sphere. R: Right hemisphere . 

Fig. 5. Mean decoding accuracy of imagined 

stimuli, separately for the visual imagery net- 

work (i.e. V1, SPL and aIPS; panel (a), category- 

selective areas (i.e. FFA and PPA; panel (b) and 

the extended semantic network for face per- 

ception (i.e. precuneus, TPJ, mPFC and IFG; 

panel (c). Statistical significance was assessed 

by means of permutation testing (10000 it- 

erations) coupled with FDR-based correction 

for multiple comparisons ( Benjamini and Yeku- 

tieli, 2001 ). Yellow: category decoding; blue: 

familiarity decoding of places; red: familiar- 

ity decoding of faces). Significance levels: one 

black asterisk, p < 0.05; two black asterisks, 

p < 0.01; three black asterisks, p < 0.001; one red 

asterisk, q(FDR) < 0.05. Error bars: standard er- 

ror of the mean (S.E.M.) (For interpretation of 

the references to color in this figure legend, the 

reader is referred to the web version of this ar- 

ticle.). 
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The other two analyses, Support Vector Classification (SVC) and Sup-

ort Vector Regression (SVR), aimed at assessing the possible role of

ividness in driving the decoding of familiarity (see Supplementary Ma-

erials, page 10–15 ). These two analyses revealed a possible effect of

ividness in some of the examined ROIs (i.e. bilateral V1, left aIPS, bi-

ateral PPA, left FFA, left IFG, right mPFC, right precuneus and right

PJ; see Figs. 6 and S9,S10). However, there were also regions in which

e obtained an effect of vividness in the absence of a significant ef-

ect for the decoding of familiarity (e.g. V1). The results of the SVC and

VR analyses are summarized in Fig. 6: regions showing a significant
7 
ffect of vividness for one or both analyses are marked with a dashed

ircle. 

Overall, the results of these control analyses seem to suggest that

imilarity between auditory cues and differences in vividness between

ategories might only partly explain the results of the familiarity decod-

ng, as these effects were significant only within a subset of the examined

OIs, but not within all of them. 

To complete our control analyses regarding the potential role of

ividness, we directly compared the significance of the differences be-

ween the decoding accuracies for familiarity and vividness. This com-
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Fig. 6. Visual representation of the results 

of the ROI-based classification analyses. Left 

panel : visual imagery network (i.e. V1, SPL 

and aIPS). Middle panel : category-selective ar- 

eas (i.e. FFA and PPA). Right panel : extended 

semantic network for face perception (i.e. pre- 

cuneus, TPJ, mPFC and IFG). Colored discs 

represent significant above-chance classifica- 

tion accuracy (color scheme similar to Fig. 5 ). 

Statistical significance was assessed by means 

of permutation testing (10,000 iterations) cou- 

pled with FDR-based correction for multiple 

comparisons ( Benjamini and Yekutieli, 2001 ). 

Different line types around the disks represent 

a significant effect in one of the control analy- 

ses: dotted line (auditory cue effect, RSA ana- 

lyzes), dashed line (vividness effect, SVR and/or SVC analyzes), continuous line (familiarity for face and/ or place > vividness). 
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arison is possible only between the decoding accuracies for familiarity

nd the results of the SVC control analyzes for vividness, but it is not

ossible for the SVR analyzes for vividness (which provides normalized

orrelation coefficients as output). We thus compared the normalized

ecoding accuracies, separately for familiarity of faces and places, with

he normalized classification accuracies for vividness (see Supplemen-

ary Materials, pages 16-17 , for details ). The result of this analyzes is

ummarized in Fig. 6: regions showing significant higher decoding of

amiliarity than for vividness are highlighted with a continuous circle. 

We obtained a significant difference between the decoding accura-

ies for face familiarity and vividness within several ROIs (Fig. S11):

 regions for the visual imagery network (Right SPL, Right aIPS) and

 regions for the extended semantic network for face perception (Left

PFC, Left Precuneus, Right Precuneus, Left TPJ, Right TPJ). Decoding

ccuracy of place familiarity was significantly higher than decoding of

ividness only in one region of the extended semantic network for face

erception, i.e. right Precuneus (Fig. S12). In sum, the Right Precuneus

as the only region where familiarity for both place and face were sig-

ificantly higher than vividness. 

. Discussion 

Here we used multivariate pattern analyzes to investigate to which

egree it is possible to decode: (1) the category and (2) the familiarity

f imagined stimuli. We found that category information was encoded

n regions of the visual imagery network, such as V1 and in parietal

reas (SPL, aIPS), in category-selective areas of inferior temporal cor-

ex (i.e. FFA and PPA) and the extended semantic network (precuneus,

PJ, mPFC, IFG). Familiarity of imagined faces and places, on the other

and, could be decoded more accurately than vividness from patterns of

ctivation in parietal regions (left SPL, left aIPS) of the visual imagery

etwork, in regions of the extended semantic network for face process-

ng (precuneus, TPJ, mPFC), but not in V1 and within category-selective

reas (i.e. FFA and PPA). In the following sections, we will discuss these

esults in more detail. 

.1. Decoding category information of imagined stimuli 

We were able to decode category (i.e. face vs. place) information

bout imagined stimuli from patterns of activation within V1. Previous

tudies reported encoding of imagined simple stimuli in V1, such as ori-

nted gratings ( Albers et al., 2013 ) or line drawings of individual letters,

imple shapes and objects ( Ragni et al., 2020 ). Regarding visual imagery

f more complex stimuli (i.e. high-resolution pictures of different stim-

lus categories), Reddy et al. (2011) were able to decode the imagined

timulus category in category-selective areas (FFA, PPA), higher visual

reas (LOC) and extrastriate visual areas (i.e. V2 – V4), but not in V1.

hus, to our knowledge the current study is the first showing decoding

f the category of imagined stimuli within V1, expanding the knowledge
8 
bout the level of complexity of the stimuli that can be encoded in early

isual cortices during visual imagery. 

Beyond visual areas, we were able to decode category information

f imagined stimuli within parietal nodes of the visual imagery net-

ork (i.e. aIPS, SPL), and within category–selective areas of the infe-

ior temporal cortex (i.e. FFA, PPA). Parietal regions have repeatedly

een shown to be recruited during visual imagery ( Knauff et al., 2000 ;

ormisano et al., 2002 ; Slotnick et al., 2005 ; Winlove et al., 2018 ), and

PL and aIPS have been reported to represent information about spe-

ific imagined stimulus exemplars ( Ragni et al., 2020 ). Similarly, ventral

emporal cortex has been shown to differentially respond during visual

magery of different stimulus categories (i.e. faces, houses and chairs:

shai et al., 2000 ; faces and places: O’Craven and Kanwisher, 2000 ;

aces: Ishai, 2002 ). Moreover, PPA has been shown to encode the iden-

ity of specific imagined places ( Boccia et al., 2017 ; Johnson and John-

on, 2014 ). Our results confirm these findings, indicating that both FFA

nd PPA can host representations of category information during visual

magery. 

Within the extended semantic network for face processing, we were

ble to decode the category of the imagined stimulus within all ex-

mined ROIs (i.e. precuneus, TPJ, mPFC and IFG). In a recent MVPA

tudy, Visconti Di Oleggio Castello et al. (2017) presented participants

ith pictures of personally familiar and unfamiliar faces. The authors

ere able to decode identity information of perceived faces, indepen-

ently of their familiarity, within high-level semantic regions, such as

he precuneus, TPJ, mPFC and IFG. Our results indicate that the ex-

ended semantic network for face perception can represent familiarity–

ndependent category information about a stimulus also during visual

ental imagery. 

.2. Decoding familiarity of imagined stimuli 

Regarding familiarity decoding, given the univariate differences be-

ween imagery of familiar and unfamiliar stimuli in bilateral mPFC and

recuneus, decoding results in these two areas are likely to be driven

y these univariate differences rather than due to differences in the un-

erlying patterns of activation. That said, we were able to decode famil-

arity of imagined faces and places from patterns of activation in pari-

tal regions (SPL, aIPS) within the visual imagery network. As these re-

ions have been frequently reported to be recruited during spatial tasks

for a meta-analyzes see Winlove et al., 2018 ), both SPL and aIPS have

een considered to be part of a “dorsal ” spatial network comprising

arietal and premotor regions, involved in the representations of spa-

ial configurations of imagined stimuli ( Sack and Schuhmann, 2012 ).

n addition, recent MVPA studies revealed representations of stimuli in

arietal cortices during perception and imagery ( Dijkstra et al., 2017 a;

agni et al., 2020 ), suggesting their role in detecting salient parts of

magined and perceived stimuli to support the orientation of top-down

ttention ( Bogler et al., 2011 ; Dijkstra et al., 2019 a). Our results suggest
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9 
hat parietal regions also contribute to the distinction between imag-

ned stimulus categories. Note that the control analyses showed that the

ffect of familiarity observed in parietal cortex might be partially (or

ully) explained by vividness in the left hemisphere, but not in the right

ne (Figs. S9,S10): in the right SPL and aIPS, we were unable to decode

ividness, and there was a significant difference between decoding fa-

iliarity and vividness (Fig. S11). Note that this effect was evident only

or faces, suggesting a possible dissociation between imagined stimulus

ategories and/or hemisphere. Further studies will be required to ex-

mine the precise contribution of parietal regions to visual imagery of

amiliar stimuli. 

We were unable to decode familiarity of imagined faces and places

ithin V1. Using personally familiar face stimuli, Visconti Di Oleg-

io Castello et al. (2017) found distributed representations of famil-

arity information in early visual cortices (i.e. V1 – V3) during per-

eption. Several fMRI studies suggested a feedback transfer of infor-

ation to early visual cortex during the execution of different tasks:

onaco et al. (2020) , for example, were able to decode different planned

ctions from patterns of activation within the primary visual cortex;

etter et al., (2014 , 2020 ) found encoding of real and imagined sounds

ithin V1 in both normally sighted and congenitally blind individu-

ls; Bannert and Bartels (2013) found representations of the prototyp-

cal colours of objects presented in black and white, and Muckli et al.,

2015) were able to encode visual information in non-stimulated por-

ions of V1, suggesting the existence of mechanisms of cortical feed-

ack from higher-level visual areas ( Muckli and Petro, 2013 ). Visual

ental imagery has been argued to rely on a similar top-down mech-

nism, where information about imagined stimuli is transferred from

refrontal and parietal areas to occipital nodes of the visual imagery net-

ork ( Dijkstra et al., 2017 a; Mechelli et al., 2004 ). Our decoding results

uggest that, as opposed to what has been observed during perception

f personally familiar stimuli ( Visconti Di Oleggio Castello et al., 2017 ),

nly category-specific, but not familiarity-related information, is possi-

ly transferred to early visual cortex during imagery. Moreover, the re-

ults of the control analyses ( Figs. 6 and S9,S10) point towards a specific

ole of V1 in representing information related to vividness of imagined

timuli, in line with previous research ( Dijkstra et al., 2017 a). In addi-

ion, V1 was the only region in which it was possible to decode vividness

ut not familiarity information, suggesting that vividness might be dis-

ociated from familiarity in this region. 

Regarding category-selective areas, we were able to decode the

amiliarity of imagined faces in left FFA and of imagined faces and

laces in PPA. The results in left FFA are in line with the observation

hat the familiarity of perceived faces can be decoded in bilateral FFA

 Visconti Di Oleggio Castello et al., 2017 ). It is worth noting that we

ere able to decode familiarity of faces from the left but not from the

ight FFA. This asymmetry in the involvement of FFA during visual im-

gery of faces has been reported by previous studies, some indicating

tronger recruitment within the right ( O’Craven and Kanwisher, 2000 )

nd others within the left hemisphere ( Ishai, 2002 ). Note also that the

eft hemisphere has been reported to be more frequently activated by

isual imagery tasks ( Winlove et al., 2018 ). 

Note that our control analyses revealed an effect of vividness in bi-

ateral PPA and left FFA, and the effect of decoding of familiarity and

ividness did not differ statistically in these regions (Figs. S9–13 and 6 ).

onsequently, decoding of familiarity of imagined stimuli in category-

elective regions might be driven by vividness, or a combination of

ividness and familiarity. Further studies will be required to clarify this

oint. 

A rich body of neuroimaging studies reported the involvement of re-

ions of the extended semantic network of face perception in processing

nformation about stimulus familiarity. Specifically, perceiving familiar

aces has been reported to recruit, in addition to category selective re-

ions within ventral temporal cortex (e.g. FFA and OFA. Haxby et al.,

000 ; Natu and O’Toole, 2011 ), a widespread network of brain regions

 Gobbini and Haxby, 2007 ; Haxby and Gobbini, 2012 ). This network
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ncludes different areas that allow us to recognize personally familiar

ndividuals, such as mPFC and TPJ - possibly involved in the retrieval of

ersonal knowledge ( Cloutier et al., 2011 ) - and anterior temporal cor-

ices and precuneus – engaged during the retrieval of long-term episodic

emories ( Shah et al., 2001 ). A similar engagement of this network

as been reported during the perception of personally familiar places

 Sugiura et al., 2005 ). These authors observed the recruitment of the

recuneus, medial posterior cingulate cortex and retrosplenial cortex,

n addition to PPA ( Sugiura et al., 2005 ). Moreover, Visconti Di Oleg-

io Castello et al. (2017) were able to decode familiarity of perceived

aces both within category-selective temporal regions (e.g. OFA, FFA)

nd semantic areas (i.e. mPFC, IFG, TPJ and STS). 

Our control analyses further support the central role of the extended

emantic network in processing the familiarity of imagined stimuli. In-

eed, several regions within the network (left and right TPJ, left and

ight precuneus and the left mPFC) represented information about fa-

iliarity for face - over and above vividness information (Fig. S11). In

ddition, RSA showed that two regions of the network – right mPFC

nd right precuneus – represented familiarity of imagined stimuli irre-

pective of the information regarding the auditory cue. One of these

wo regions, right precuneus, represented familiarity - over and above

ividness - both for faces and places. This ROI, which is part of the ex-

ended semantic network, was the only region across all examined ROIs

howing all these properties. Overall, our findings further expand pre-

ious observations, indicating that visual imagery of personally familiar

aces and places recruits a similar set of brain regions - comprising the

xtended semantic network - as those involved during perception. 

The general functional overlap between bottom-up sensory stimula-

ion and top-down mental imagery has been reported in several univari-

te ( Winlove et al., 2018 ) and multivariate studies ( Reddy et al., 2011 ;

ee et al., 2012 ; Albers et al., 2013 ; for a review see Dijkstra et al.,

019 a), and across different domains (e.g. auditory: Zatorre and

alpern, 2005 ; motor: Monaco et al., 2020 ). Our results are in line with

he existence of a shared neural substrate for perception and imagery.

n open question remains whether visual imagery and perception of

ersonally familiar stimuli rely on the same neural representations, es-

ecially in regions of the extended semantic network for face percep-

ion. Since a growing number of studies reported shared neural codes

etween visual imagery and perception in occipital ( Albers et al., 2013 ),

nferotemporal ( Reddy et al., 2011 ; Stokes et al., 2011 ) and parietal

 Dijkstra et al., 2017 b; Ragni et al., 2020 ) nodes of the visual imagery

etwork, a similar neural representation might underlie visual imagery

nd perception of personally familiar stimuli as well. 

. Conclusions 

Our results revealed that during visual imagery of personally familiar

aces and places, information about the stimulus category is distributed

cross the visual imagery network, category-selective areas and the ex-

ended semantic network of face perception. Familiarity information,

nstead, was represented within parietal regions of the visual imagery

etwork and within some regions of the extended semantic network of

ace perception, but not in V1 – which seems to be mainly involved in

rocessing vividness information. These results extend previous knowl-

dge about the level of complexity of information that can be repre-

ented in early visual cortex during visual mental imagery. Moreover,

ur results suggest that stimulus familiarity might be an additional ele-

ent that is shared across visual perception and visual imagery, extend-

ng a growing corpus of studies investigating the neural basis of visual

ental imagery. 
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