Prof. Dr. A. Pfitzner

anschauliche Begründung!

Wiederholungsklausur zur Vorlesung Anorganische Synthesechemie im SoSe 2006

Punkte

	,	MIC
1.	Die Umsetzung von Natrium mit Stickstoff unter speziellen Bedingungen ergibt einen Feststoff o	ler
	Zusammensetzung Na3N. Nennen Sie vier Strukturtypen, die aufgrund der Zusammensetzung fü	r
	diese Substanz in Frage kommen.	(4)
	Beschreiben Sie drei dieser Strukturtypen bzw. wesentliche Merkmale.	(9)
2.	Die Synthese von Festkörpern läuft unter klassischen Bedingungen, also bei der Hochtemperatur	<u>'</u> -
	synthese, üblicherweise in das thermodynamische Minimum. Beschreiben Sie zwei Synthese-	
	methoden, die es ermöglichen, kinetisch stabile Produkte zu erhalten.	(8)
3.	Gold offenbart in vielen Strukturen dem Betrachter sofort seine Oxidationsstufe anhand seiner	
•	Koordinationssphäre. Geben Sie diese an für Au ¹⁺ und Au ³⁺	(2)
	und erklären Sie, wie die Umgebung des Au³+ zustande kommt.	(6)
4.	Magnetische Nanopartikel sind Gegenstand vieler Forschungsaktivitäten. Skizzieren Sie den Verl	auf
	der magn. Suszeptibilität in Abhängigkeit von der Temperatur in der üblichen Darstellung für a)	
	Curie-Verhalten und b) Curie-Weiss-Verhalten und geben Sie jeweils	(6)
	die Gleichung an, die dieses Verhalten beschreibt.	(4)
5.	Welcher Vorgang ist maßgeblich für die notwendige Reaktionsdauer von Festkörperreaktionen	(5)
	und wie kann man diesen Vorgang beschleunigen? Nennen Sie maximal drei	
	Möglichkeiten.	(6)
6.	Hydrothermalsynthese: wo spielen in technischen Prozessen die Phänomene der	
	Hydrothermalsynthese eine wichtige Rolle? Nennen Sie mindestens zwei.	(4)
7.	Wie ändern sich typische Größen eines Lösungsmittels unter hydrothermalen Bedingungen:	
	a) Viskosität bei steigendem T	(4)
	b) Dielektrizitätstkonstante mit p	(4)
	c) Dissoziationskonstante eines gelösten Salzes bei steigendem p	(4)
8.	Was sind die Unterschiede zwischen einem chemischen Transport und einem physikalischen	
	Transport	(8)
	(Beispiele für letzteren)?	(4)
9.	Geben Sie zwei Metalle an, die sich durch den chemischen Transport reinigen lassen.	(4)
	Welche Reaktionen laufen jeweils ab?	(8)
10.	Erläutern Sie allgemein, wie der chemische Transport abläuft.	(5)
	In welcher Weise beeinflusst die Energiebilanz einer Reaktion die Transportrichtung? Geben Sie	eine

VIEL ERFOLG!

100