## Universität Regensburg

Naturwissenschaftliche Fakultät IV -Chemie und Pharmazie

## Institut für Anorganische Chemie Prof. Dr. A. Pfitzner



D-93040 Regensburg, 30.07.2001

Telefon + 49 941 943 4551 Sekretariat + 49 941 943 4552 +49 941 943 4983 Fax

e-mail:arno.pfitzner@chemie.uni-regensburg.de

## 2. Wiederholungsklausur zum Anorganisch-Chemischen Praktikum

| 8                                                                                                                                                     |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (2. Sem.) SS 2001, qualitativer Teil                                                                                                                  |                    |
| 1. Ihre Analysensubstanz enthält Sulfationen. Beschreiben Sie die Vorgehensweise, ur                                                                  | m der              |
| entsprechenden Nachweis zu führen. Geben Sie jeweils Reaktionsgleichungen an!                                                                         | (6)                |
| 2. Beschreiben Sie die unterschiedlichen Reaktionen von Al(OH) <sub>3</sub> , Zn(OH) <sub>2</sub> und Cr(OH                                           | [) <sub>3</sub> mi |
| NaOH.                                                                                                                                                 | (5)                |
| Was muss man beachten, wenn man Al <sup>3+</sup> als Hydroxid im Trennungsgang abtrennen will?                                                        | (3)                |
| 3. Sie können zwei Elemente der (NH <sub>4</sub> ) <sub>2</sub> S-Gruppe durch Umsetzung mit Co(NO <sub>3</sub> ) <sub>2</sub> au                     | uf dei             |
| Magnesiarinne nachweisen. Welche Elemente sind das?                                                                                                   | (2)                |
| Formulieren Sie die Reaktionsgleichungen für beide Reaktionen                                                                                         | <b>(4)</b>         |
| und benennen Sie die Reaktionsprodukte.                                                                                                               | (2)                |
| 4. Nennen Sie zwei Kaliumnachweise, davon mindestens eine Fällungsreaktion.                                                                           | (4)                |
| 5. Welche Reaktion läuft ab, wenn man eine alkalische Lösung von $CrO_4^{2-}$ ans                                                                     | äuert?             |
| (Reaktionsgleichung)?                                                                                                                                 | (3)                |
| Woran kann man das erkennen?                                                                                                                          | (2)                |
| 6. Die Vollständigkeit der Sulfidfällung eines Metallkations ist abhängig vom pH-Wert.                                                                | Geber              |
| Sie Reaktionsgleichungen an, die diese Beobachtung erklären.                                                                                          | <b>(2</b> )        |
| Berechnen Sie für das Beispiel MnS den pH-Wert der notwendig ist, um eine vollstä                                                                     | indige             |
| Fällung sicherzustellen. Wichtige Größen sind $K_{S1} \approx 10^{-7} \text{ mol } 1^{-1}$ , $K_{S2} \approx 10^{-13} \text{ mol } 1^{-1}$ , $[H_2S]$ |                    |
| gesättigten Lösung = $10^{-1}$ mol $1^{-1}$ . Ein Ion gilt als vollständig gefällt, wenn seine Konzent                                                | tration            |
| in der Lösung $\leq 10^{-5}$ mol l <sup>-1</sup> ist. Das Löslichkeitsprodukt von MnS ist $10^{-15}$ mol <sup>2</sup> l <sup>-2</sup> .               | (10)               |
| Welche Farbe hat MnS?                                                                                                                                 | <b>(2)</b>         |

7. Wie trennen Sie Ba<sup>2+</sup>, Sr<sup>2+</sup> und Ca<sup>2+</sup> von den Elementen der löslichen Gruppe ab? **(3)** Sie mindestens eine Nachweisreaktion für Nennen eins dieser drei Elemente (Reaktionsgleichung). **(2)**