Universität Regensburg

Fakultät für Chemie und Pharmazie Prof. Dr. A. Pfitzner Prof. Dr. M. Schütz Dr. D. Usvyat

D-93040 Regensburg, 22.4.2008 + 49 941 943 4551 Telefon Sekretariat + 49 941 943 4552 Fax +49 941 943 4983

e-mail arno.pfitzner@chemie.uni-r.de

Wiederholungsklausur zur Vorlesung Anorganische Nanomaterialien im WiSe 07/08

Punkt
1) Skizzieren Sie die Aufsicht auf eine (222)- und eine (200)-Fläche eines kubisch dicht gepackten Kristalls, der nur aus einer Atomsorte besteht. Benennen Sie das Element. Zeichnen Sie jeweils die Gitterkonstante <i>a</i> in Ihre Skizze ein.
2) Man unterscheidet vier Energiebeiträge zur Gitterenergie von kristallinen Feststoffen. Welche sind das? Beschreiben Sie kurz. Treten diese Beiträge auch in Nanopartikeln auf? 5 Jonenkristalle und Molekülkristalle unterscheiden sich insbesondere in einem dieser Beiträge. Welcher ist das und warum ist das vermutlich so?
3) Eine ganze Reihe von Eigenschaften von Festkörpern sind nur für die sog. bulk Phase zu beobachten. Es handelt sich um kooperative Phänomene. Nennen Sie min- destens drei solche Phänomene und begründen Sie ganz allgemein, warum diese nicht in gleicher Weise in Nanopartikeln auftreten können.
4) Bei der Kristallkeimbildung und beim –wachstum beobachtet man gegenläufig energetische Effekte. Geben Sie die freie Energie ΔG als Funktion des Keimradius r an (Gleichung) 5 und skizzieren Sie!
5) Geben Sie die wichtigsten Gemeinsamkeiten und Unterschiede zur REM und zu TEM an. Mit welcher Methode erzielt man die höhere Auflösung? Warum ist das so? 4 Warum und wie kann man mit diesen Methoden eine chemische Analyse durchfüh- ren?
6) Nennen und beschreiben Sie zwei Rastersondenmethoden, ihre Gemeinsamkei- ten und Unterschiede. Welche experimentellen Entwicklungen ermöglichen die extrem hohe Auflösung der AFM?
7) Welche Zahl von Atomen erwarten Sie für Goldpartikel, die aus sehr wenigen Atomen bestehen? (magic numbers??) Welche Symmetrie haben solche Partikel? Vergleichen Sie mit massivem Gold und geben Sie mögliche Gründe für die Unterschiede an.
8) Wie lautet die Punktgruppe des Cyclopropans (C_3H_6)? Geben Sie die Symmetrie-elemente dieser Gruppe an! Handelt es sich hierbei um ein chirales Molekül? Begründen Sie dies!
9) Wie viele Dimensionen hat die Brillouin-Zone eines Polymers? Begründen Sie dies! 7
10) Betrachten Sie einen eindimensionalen "Kristall" mit einem Atom pro Elementarzel

le. Skizzieren Sie das Energieband, welches von den s-Orbitalen der Atome herrührt!

Begründen Sie Ihre Zeichnung!