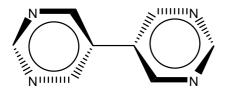


FAKULTÄT CHEMIE UND PHARMAZIE Lehrstuhl für Anorganische Chemie

Prof. Dr. Arno Pfitzner

Dr. Denis Usvyat


17. Februar 2012

Klausur zur Vorlesung Anorganische Nanomaterialien, WiSe 11/12

Diese Klausur besteht aus zwei (!) Teilen. Im Sinne einer schnellen Korrektur bitte die Aufgaben 1-6 und 7-14 auf getrennten Zetteln beantworten.

Punkte

1. Wie lautet die Punktgruppe von 5,5'-Bipyrimidin:

(Der Winkel zwischen den Pyrimidin-Ringen (der Torsionswinkel) beträgt ca. 40°.)

Geben Sie die Symmetrieelemente dieser Gruppe an! Handelt es sich hierbei um ein chirales Molekül? Begründen Sie dies!

Tipp: Zeichnen Sie das Molekül auch in den anderen beiden Projektionen!

8

- Betrachten Sie folgende Systeme $CH_3(C_2H_4)_4CH_3$, $CH_3(C_2H_4)_8CH_3$, $CH_3(C_2H_4)_{100}CH_3$, $(C_2H_4)_{\infty}$. Bei welchem System oder welchen Systemen können die elektronischen Zustände mit Wellenvektoren (kvectors) charakterisiert werden? Begründen Sie Ihre Antwort!
- 3. Es gibt ein Problem mit der Benutzung des Planewave-Basissatzes für ElektronischeStrukturrechnungen für die Systeme von Punkt 2. Was ist das Problem? Und mit welchem Modell kann man diese Rechnungen trotzdem ausführen?5
- **4.** Betrachten Sie einen in z-Richtung eindimensionalen "Kristall" mit einem Atom pro Elementarzelle. Skizzieren Sie die Energiebänder, welche von den p_X-, p_y- und p_Z-Orbitalen der Atome herrühren. Begründen Sie Ihre Zeichnung!
- **5.** Welcher Kohlenstoff-Kristall hat das breitere Valenzband (oberstes), Fullerenkristall oder Diamant? Begründen Sie!
- Worin liegt der prinzipielle Unterschied in den Bandstrukturen von Aluminium- und Silicium-Kristallen? Wie zeigt sich dieser Unterschied in der Leitfähigkeit?

Diese Klausur besteht aus zwei (!) Teilen. Im Sinne einer schnellen Korrektur bitte die Aufgaben 1-6 und 7-14 auf getrennten Zetteln beantworten.

Diese Klausur besteht aus zwei (!) Teilen. Im Sinne einer schnellen Korrektur bitte die Aufgaben 1-6 und 7-14 auf getrennten Zetteln beantworten.

	en Kristalls, der nur aus einer Atomsorte besteht. Zeichnen Sie jeweils die Gitterkonstanten <i>a, b</i> u Skizze ein.	nd 10
8. der Part	Welche beiden prinzipiell verschiedenen Ansätze zur Herstellung von Nanopartikeln, die die Größikel berücksichtigen, gibt es? Erläutern Sie kurz.	Se 10
9. das? Bes	a) Man unterscheidet vier Energiebeiträge zur Gitterenergie von kristallinen Feststoffen. Welche s schreiben Sie kurz. Treten diese Beiträge auch in Nanopartikeln auf?	sinc 5
 b) Edelgase kristallisieren bei tiefen Temperaturen in dichtest gepackten Atomanordnungen. Welche dichtesten Packungen kennen Sie? Welche der in a) diskutierten Beiträge spielen hier eine größere, welche eine kleinere Rolle? 		
10. solange	Skizzieren Sie den physikalisch-chemischen Grund dafür, dass Nanopartikel beim Altern wachsen man keine besonderen Vorkehrungen zur Konservierung trifft.	, 7
11. erkennb	Nennen Sie ein einfaches Beispiel, an dem der Einfluss der Größe von Nanopartikeln ganz leicht par ist.	3
12. Alltag V	Nennen Sie je ein Element und eine einfach aufgebaute Verbindung, die als Nanomaterialien im erwendung finden. Geben Sie neben den Substanzen auch die Anwendungen an.	8
13. Welche	Welche Arten von Magnetismus erwarten Sie von Feststoffen? Erläutern Sie (5 oder mehr) dieser Arten von Magnetismus können sicher nicht in sehr kleinen Nanopartikeln auftreten?	5 2
14. und erlä	Benennen Sie zwei Arten von Rastersondenmethoden autern Sie kurz die Funktionsweisen.	2 8

Aushang der Ergebnisse am schwarzen Brett am LS und im Netz. Einsicht in die

korrigierten Klausuren: Termin wird rechtzeitig am schwarzen Brett bekannt gegeben.

100

VIEL ERFOLG!