Universität Regensburg Institut für Anorganische Chemie

Prof. Dr. A. Pfitzner

Klausur zur Vorlesung Anorganische Festkörperchemie im SoSe 2005

	i ui	IKIE
1.	Dichte Kugelpackungen: wie viele Arten dichtester Kugelpackungen gibt es prinzipiell?	(2)
	Skizzieren Sie zwei Arten dichtester Kugelpackungen	(4)
	und geben Sie an, wie die darin enthaltenen Tetraederlücken verknüpft sind (Spitze, Kan	ıte,
	Fläche) Skizzen	(6)
	Welche Strukturtypen resultieren, wenn in den beiden üblicherweise unterschiedenen	
	Kugelpackungen a) alle Oktaederlücken b) alle Tetraederlücken besetzt sind? Geben Sie	die
	möglichen Summenformeln und die Namen der Strukturtypen an	(4)
	Können sowohl alle Tetraeder- als auch alle Oktaederlücken besetzt werden? Wenn ja,	
	welcher Strukturtyp resultiert?	(4)
2.	Punktdefekte in Feststoffen: Welche Arten unterscheidet man? (Namen, Beschreibung)	(4)
	Bei welchen Substanzen tritt welche Art von Defekten bevorzugt auf?	(2)
	Wie kann man diese Defekte experimentell unterscheiden? Begründung!	(6)
3.	Synthese von Festkörpern: Die Diffusion ist maßgeblich für die Geschwindigkeit, mit de	er
	Festkörperreaktionen ablaufen. Skizzieren Sie, welche Arten von Diffusion man hier	
	unterscheidet	(8)
4.	Skizzieren Sie die verschiedenen energetischen Beiträge, die bei der Kristallbildung und dem	
	Kristallwachstum zu berücksichtigen sind. Geben Sie in diesem Diagramm wichtige Pun	
	an	(10)
5.	Sie bilden Kristalle aus einer Lösung und beobachten, dass je nach Synthesebedingunger	`
J.	entweder wenige, gut ausgebildete Kristalle entstehen oder sehr viele, kleine Kristallite	•
	vorliegen. Erläutern Sie diese Beobachtung.	(8)
_		(0)
6.	Erläutern Sie allgemein, wie eine chemische Transportreaktion abläuft (Skizze,	. (0)
	thermodynamische Größen)	(8)
	Geben Sie zwei Beispiele für solche Transportreaktionen an.	(6)
7.	Nennen und beschreiben Sie drei Methoden zur Herstellung von Einkristallen (keine	
	Transportreaktionen)	(9)
8.	Skizzieren Sie die Abhängigkeit der elektrischen Leitfähigkeit eines Metalls, eines Halblei	iters
	und eines Supraleiters von der Temperatur.	(9)
9.	Wie sieht die Zustandsdichte eines a) Metalls und b) eines Halbleiters aus?	
	Skizze/Beschreibung. Zeichnen Sie auch die Lage des Fermi-Niveaus ein.	(10)
		100
		TUU